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Preface

The purpose of this study was to develop a computer

I code which would validate the use of the Boundary Element

I Method (BEM) in problems of fracture mechanics. Specifi-

cally, I used the Displacement Discontinuity Method (devel-

oped by Stephen L. Crouch) to solve several fracture

configurations.

I Originally, I modified the code only slightly in order

to solve problems involving isotropic materials. Having

obtained results for those cases, I then modified the code

even further to include specially orthotropic materials

(such as 0 ° and 900 composite laminates).

IFor introducing me to the concepts of the BEM, and

especially for his patience and understanding during thase

past several months, I thank my faculty advisor, Dr. Anthony

3Palazotto. For coming up with the displacement disconti-

nuity solution for an orthotropic material, I give credit to

I divine intervention. Perhaps most. importantly, for helping

to break the tension which seemed to build to new levels

each week, I am grateful for the presence of all the regular

participants in "Friday at the FlyWright."

Ralph E. Urch

I
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Abstract

This investigation- presents analyses of several frac-

ture mechanics problems via the Boundary Element Method.

Specifically, an indirect procedure known as the Displacement

Discontinuity Method was used to solve problems involving

cracks in isotropic or specially orthotropic materials.

Infinite as well as finite regions were considered.

A series of configurations were analyzed and compared

with either analytic solutions or results from a finite

element model. Agreement for the infinite-domain problems

was excellent, while solutions to the finite-domain problems

ranged from good to excellent.

Advantages and disadvantages of the Displacement Dis-

continuity Method are briefly discussed. The main advantage

of the method is the requirement to model only the boundary

of the problem under consideration. The major disadvantage

is the time required to solve the resulting fully-populated

matrix equation.

Separate FORTRAN codes are provided as appendices for

3 the two material types - isotropic and orthotropic. These

programs may be utilized for either stress or fracture

analyses. Program outputs include displacements, stresses,

and stress intensity factors, as appropriate.

I
I
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VALIDATION OF THE BOUNDARY ELEMENT METHOD APPLIED TO COMPLEX

FRACTURE MECHANICS CONDITIONS

[
I. IntroductionI

In analyzing aircraft structures, a mathematical model

is usually developed which involves an approximate represer-

3 It~ation of the physical component under consideration. The

most common methods discretize the struacture into a manage

able number of smaller elements for which a mathematical

solution in available. The., methods may be divided into

two groups (see Figure 1.) based upon whether the entire

5 domain or just the boundary in modeled.

The most common domain tfechnique is the Finite Element

Method (FEM), "which is a piecewise variation to minimize

the total potential energy" (11:1) of the system. Another

n example is the Finite Difference Method, in which the

differential equations of the system are approximated by

finite differences (Newton forward difference, backward

difference, central difference, etc.). In all cases, the

domain techniques are characterized by an approximation of

3 the system partial differential equations. The boundary

conditions, however, are satisfied exactly. (See Cook (5)

and Desai (9).)

I
I

I
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I Figure 1.1. Numerical Methods of Structural Analysis

I
On the other hand, boundary techniques approximate the

boundary conditions of the problem but they exactly satisfy

the system partial differential equations. These methods

can be further classified into direct or ind rect methods,

according to whether the boundary parameters are solved for

directly or from some other system parameters (2:2).

The most. common direct boundary element technique is

the Boundary Integral Equation (BIE), or Boundary Element

Method (BEN). This involves combining the problem at hand

3 with another (for which the solution Is known) in such a way

that, when the strain energy of the system is integrated

over the volume, Green's formula may be used to translate

the volume integral into integrals involving only the

I
* 1-2
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I
boundary of the problem. Applying the required boundary

conditions then yields the solution. (See, for example,

3 Rizzo (16), Snyder and Cruse (21), Fenner (10), Rizzo and

Shippy (17), Cruse (8), Okada et aL (14), Shi and Bezine

3 (19), and Shih and Palazotto (20).)

A lesser-known direct method, called the Fictitious

Stress Method (FSM), discretizes the boundary into a number

3 of straight line segments over which the traction is assumed

constant. As will be shown later, it is related to the

I indirect method chosen for this study - the Displacement

Discontinuity Method (DDM) - both of which are presented by

Crouch and Starfield (7).

3 The DDM is well-suited to problems in fracture

mechanics because it uses as its basic element a line crack.

5 That is, each element is considered to be composed of two

surfaces which are coincident along a line segment. By a

judicious selection of the definitions of each element,

3 problems involving cracks in a finite or in an infinite body

may be solved.

3 Besides being able to provide solutions to problems

involving infinite domains, the boundary techniques have an

I advantage over the domain techniques due to the requirement

3 to model only the boundary. This reduction of order of the

problem is especially useful considering that fewer elements

3 (and therefore fewer degrees of freedom) must be used to

solve a given problem.

1
3 1-3

U



I

There are drawbacks, however. The domain techniques

arie able to take full advantage of efficient, banded-matrix

solution routines. The boundary techniques, on the other

hand, produce fully-populated matrices, which increases the

computational time required for a given number of degrees of

3 freedom. Thus, there is a trade-off between both techniques

in problems requiring a large number of elements.

Nevertheless, a boundary element technique -

specifically, the Displacement Discontinuity Method - was

I used in this study and its use in problems of fracture

I mechanics validated. First, a general outline of the method

is presented, followed by its use for an isotropic material.

3 Next, application of the DDM to problems involving a

specially orthotropic material is demonstrated. For both

cases, stress analysis and fracture mechanics applications

are reviewed. Finally, some of the advantages and

disadvantages of the DDM are briefly discussed.

Included as appendices are the two FORTRAN programs

used in this study. The first program CWODD - Appendix C)

3 was extracted directly from Crouch and Starfield (7:293-300)

for the analysis of an isotropic material. This program was

modified only slightly to include computation of stress

3 intensity factors. The second program (TWODDO - Appendix

D) is a modification of the former to incorporate a

3 specially orthotropic material.

I
3 1-4

I



I
I

II. Theoretical Discussion

The DDM involves the concept of a displacement discon-

tinuity along a line crack, which may be imagined "as a line

3 crack whose opposing surfaces have been displaced relative

to one another." (7:79) The DDM uses the special case where

the relative displacements are constant along the entire

crack. In reality, the relative displacements vary over the

entire length of the crack; however, if the line crack is

I discretized into a sufficient number of smaller line cracks

(elements), the displacements will be approximately constant

over the length of each element. The solution obtained by

superposition of the displacement fields of all the elements

will then represent the true solution with sufficient accu-

3 racy. This is the basis of the DDM.

If a series of line cracks in an infinite plane are

I joined end-to-end to form a closed contour, two regions are

3 formed. The interior region may be used to obtain the solu-

tion to a problem involving finite dimensionality, while the

3 exterior region may be used to represent a cavity in an

infinite body.

I As will be seen later, the DDM involves the solution of

a system of equations which are determined by specifying

either (i) the tractions on each element, (ii) the displace-

I
1 2-1
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ments of one of the surfaces of each element, or (iii) a

combination of the two.

A. The Method

The Displacement Discontinuity Method is characterized

by use of the solution to a line crack in an infinite plate

where the two surfaces of the crack have a constant displacement

I with respect to one another (Figure 2.). The displacement

3 field for an arbitrarily oriented crack (element) is

obtained from this solution via coordinate transformation.

3 For two or more elements, linear superposition is used

by alternately considering only one element to have a dia-

I placement discontinuity present (i.e. - the displacements

are considered continuous at the other element locations).

The sum of each of these displacements then yields the dia-

placement due to the presence of all the elements, assuming

of course that the material is Unearly elastic.

I By applying appropriate boundary conditions, a linear

system of equations is formed. Solution of this system for

the relative displacements at each element then allows

3 determination of the displacements and stresses at each

element. The stresses and displacements at other points in

3 the body can be obtained based on these same relative sur-

face displacements.

The procedure may be divided into the following ii

3 steps:

* 2-2
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I Ha ad

Spositive 
ngti,

Requirement:Displacements are continuous everywhere
except across the crack.

-
Normal: u -u + D,, constant
Shear: u -u -D -constant

Figure 2.1. Line Crack In an Infinite Plate

I
I (1) Use the solution to the problem of a constant displace

ment, discontinuity along a line segment (crack) in an Infi-

nit* plate, which takes the following form:

u r f 1(R,9) Do + fi9(R,9) Dn  (2.1)

U 9 - fi (1,9) Da + f v(1,9) Dn  (2.2)

o _-fsr(1 1 9) Do + ,)D (2.3)

2-3I
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ay -, Do + f4,,y> D (2.4)
Y~ f7 4R~ D n ~
xy 5 s n (2.5)

where R, 5F (or s, n) is the local coordinate system (see

Figure 2.2), the functions f... and f ,, depend only upon the

local coordinates and the length of the crack, and D and D

are the shear and normal displacement discontinuities,

respectively. That is, D is a (displacement) discontinuity

in the R-direction while D is a discontinuity in the

I'r-direction such that

D - - u.. u -u (2.6)

D u- nu u (2.7)

I

Y\ positive surac.2Sc X

!n nII

~nogat ivo surface

Jjx x

I Figure 2.2. Coordinate Systems for a Single Element

I 2-4
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I where the superscripts '+" and refer to the positive and

negative surfaces, respectively, of the crack.

(2) Use coordinate transformation to relate the local coor-

I dinates (R, 5) to the global coordinates (x, y) for an arbi-

trary rotation (Cj) and translation (Jx, Jy) as depicted in

Figure 2.2:

SR (x- ix) cos + (y- Jy) sin i <3.8>

yn-(x- jx) sin j + (y- jy> coo j9 (2.9)

u : ucos jo- u- sin (2.10)
x x y

u U. sin ji u_ Cos jig (2.11)
Y x Y

a M a__ coo 2 jo - T__ sin 2Jt + a-- sin2 Jt (2.12)xx xx xy yy

I a' -__ sin2 j i + a__ coo t9 (2.13)

I xy xx yy xy

(3) Consider a series of N line cracks (elements) joined

end-to-end (Figure 2.3). Determine the effect on the ith

I element of dispLacement discontinuities at the jth element.

Because the displacements and stresses prescribed at each

element are specified in the local coordinate directions of

the element, transform the above equations to the ith

element's local system (R', Y'):

u.. mu cos g9 + u gin "1 (2.15)
ug 9, -u win 19 + u coo j9 MM16

ai -IR Ma coo 2 + r sin 2% + o sin 2 (2.17)
xy yy

I
I 2- I
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I y

y Ei

I

I

II
II

III2 a
IEll

x jx xI

I Figure 2.3. Series of N Line Cracks Joined End-to-End

0- sinT sin 2"+ coo t9 (2.18)y xx xy yy

a--(o' -a ) sin coeBt + T <coo a - win 2 t

(2.19>

I (4) Note that the displacements 'u. and u and the

stresses I&_, and % 'r,- are equivalent to the local shear

and normal displacements and stresses at the ith element:

I
I 2-6

I



I

u u (2.20)
L

u - u_ (2.21)Y,

o - T R,;;,(2.22)

an - 5;1 y (2.23)

(5) Use the above four steps to express the effect of dis-

placement discontinuities JDs and JD n at the jth element on

the displacements and stresses at the center of the ith

element:

U a U Cos t9 + u sin t (2.24)

un u sin t + U cos (2.25>)
io,---(o, - o ) sin L' co.L'B+T' (co. s in )

S xx yy Xy -- s in 2  
t <I (2.26)

a n a ,- sin 22Lt + io, cos 2 (2.27)n r xx xy yy

where subscripts "x" and '"y" refer to the global coordinate

directions, and

U .U_ COg J - U_ sin JN N y

- f ir (R,>)JD cos jq + f 19 (R,Y)3jD coo j

_ f 2R ,)jD a sin j- f 2y(R,)jDnsin jA

. [- f (rY) cos j - f 2_(R,7) sin J O]JD

+ I1 ,Y ) coo w - f 2 9 (CR,V) sin J]JDD ( 2.21)

I
I
I

I



U u - u. injt+u co
y y

f R(j, Y> D 8sin J l + f9 .(R,VjD nsin i

I f RV osnJg + 2f (,7i Cos ] D

+ [f (Yc,5; sin J1 + f ,5p Cos ( D 2.29)

a- co 2. CO t9 - T- sin 2i j + a--_ sin 2I x xxRx yy
<R 5f ) j( ,)D acoo 2 *e f .(iiC,q;jD ncoo 2 1

I35 (R5 3y Dfi j9 VR5'Dnsn2t

+~~ f4<,D3st 2 j .43<Cy 3 i

C,p>) D in 2P - f (,j ) in 2

*f,,(R,3 Dsin jj + f 23ic,51) D n (230

a - o,--. sin 2  i t9+ T--,.. gin 2 ji + a'__ Cos 2Uy Mxy yy

+ f,,(,jDsin 2 $0+ f5R,YD nin 2$

= If (R,Y~)D in 2 + f (R,~Dsin 2 $
+x f.~Ccs, JA 5 o+Iy <RYsn2jl

2-



T - - c, _) sin j Cos + T_ (cos 2  s

l" [I-( ,jiD + f3-i ,)D - - ( 'Y>L x 6 jy- 4 ~

5 , ) D.n sin 3j Cos;4 + [f R )i>D

+ f RY D n](coo 2 1 - si n 2 i)9

•. y> <(Co)(c s 2 - sin j) D a

1 + sif(xy)- f (5 ,y)I sin 't cos $0

+ f('c°s - sin t1) Dn  (2.32)

By properly defining a new set of functions f.rx and

f.y, the global displacements and stresses can be written in

i the form

U u M fx (rC5iq 6) D+ f ly CR5) n (2.33)

yU - Bf.x(R,Y,jo)jDa + f y(R,3 , )jDn (2.34)ay = . f=,<T',9) jD a+ .= (-,V,je>jD n2.3,5>

a "- fx(rYjq~) D + f(R,j)jDn (2.36)

* 4Xy

p cy M e,(ts,5,jDg + f.y(R',Jq n  (2.37)

while, by using Eqs (2.24) through (2.27), the local dia-

placements and stresses take the following form:

u a M Bs (R,V,'j) 3 D + "JB (R,9,3 P) n (2.38)

u n JBn ( v,9,JPJDa + )BD n r R,B ,j,)jD n  (2.39)

- 3JA (asCR,9, eD + LJA (R, ,a )3 Dh  (2.40)

La n MjA rM (R,V,j)JD a + "JA r(,9,'Dn (2.41)

I
2-9
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I where tUBBe , , n, ... , 'lAnn are referred to as influence

I coefficients.

i (63 Compute the total effect at the ith element as the sum

of the effects of all N elements:

us M jB sjDs + ij B n - jD 2.42)
j=1 j=j

t N N

un a jB nD a+ K B nD (2.43)

j=1 j=1

N N
t a M jA D + tJ"A D (2.44)

88 T s an n

t jA ( D6+2 jArnj 2.45)k
j=1 j=1

1 (7) Determine the effect of the ith element on Itself

(element ol.f-effectw) by computing the influence coeffi-

cients for the case that I j and - F= -O. The result is

that all of the stress influence coefficients ( iA 'a) are

single-valued, but that some of the displacement influence

coefficients (itB 'n) are dual-valued. Namely,

i' B M T !- for 10 (2.46)

The discontinuous nature of i 8 and i n does notI 8 nnf

cause complications, however, if a direction of travel is

chosen consistently when defining the boundary of a problem.

Referring to Figure 2.4, Crouch and Starfield (7.64-65)

I2-10
I



I C,__ -EXTERIOR

// INTERIOR i

Direction of trave. shown is for an exterior
problem (cavity in an infinite plane).

I
Figure 2.4. Defining the Boundary of a Problem

3state that

the values of coefficients [B.6] and I Bnn] depend
upon the way in which curve C' is approached....
Curves C'I and C' can be regarded as the boundaries of
the intertor an d exterior regions, respectively, ofcurve C' .... (If] we traverse curve C' in the
clockwise sense ... then the negative side of the curve

defines the boundary of the interior region. We can
therefore avold having to..use different values for the
coefficients C "B ] and U B I if we agree always to
traverse the boundary in surc a way that the outward
normal points away from the region of interest.
Accordingly, we adopt the following convention: The
boundary of a finite body is traversed in the clockwisesen.e, whereas the boundary of a cavity is traversed in
the counterclockwise sense. This convention leads to
some simplification in computer programming because it
means that coefficients 1C B I and 1""B I are equal
to + 1/2 for both types of floblems.

I
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1 (8) Choose the equations appropriate for the prescribed

boundary conditions of the problem. The boundary conditions

at each element can be grouped into four categories:

<t) a' aand "a' are presc, bed

(ii) u and un are prescribedS l

MOii u sa and a n "0 prescribed

or <iv:) :a and un are prescribed.

Thus, a system of 2N equations is formed:

N N

Lba - Ljc B jD + T ij c s n jD n i - 1,2,...N (2.47)

j=1 j=1

N N

b 57 tjc'wD a+ 0 c n jD n i- 1,2,...N (2.48)
Sj=1 j=t

where

b o r' or u b a a' or uI a a n n n
ijcas M J A 0as or ijB as i c  no M "j A no r t B no

'j -M J A o r. JD j C M , JA o r" IB <2-.49 >
an ol1n an nn nnn

as appropriate.

(9) Solve the system of 2N equations for the 2N unknowns (N

unknown jD + N unknown 3D - 2N unknownw) using direct
Gaussian elimination. Because of the diagonal dominance of

the matrix, no pivoting is required to ensure an accurate

result.

I 2-12
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I (10) Compute the displacements and stresses at each element

3 using

N N

'u - M B JD + ijB JD (2.50)

rOs o ro1n
j=1 j=1

N N

U-=T s B tJs JD s + T.A iJB iD n 2.50)
nn n

j=1 J=1

N N

L V L jA jD s + : jA jD (2.52)
J. J.. oIN N

L AiJD + D 'A D (2.53)
n Tso L nn nU jz j=1

'- + L -Iu + - u -D (2.54)

u - u - (2.55)

n n n

(11) Compute displacements and stresses at other points in

the body using

Iu 1 " N +J (2.56)

j= 1  j=i

IN NN N

U M ~ ~,,$ D + T7 f (Rjo) jD (2.57>
Y T .' 2x<XYj9 s f2,(

J=1 j=1

N N

a ' - f7xf( ,,jo' jD + f.Y(rc,,jO> j D. (2.58)

j~z j=1
N N

a y - ZIf(D,,~)~ + f.YCYj9 j D. C2.59)

I2"13
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I NN
T Xy f.,' D + f5(,j19> JD (2.60>

j=1 j=1

3 where

R-(x- Jx) coo J + (y - Jy) sin J (2.61>

I-x -x) sin ji + <y - JY> coo i1 (2.62)

I and (x,Jy) are the midpoint coordinates of the jth element.

I B. Computer Implementation

3 The DDM lends itself to being programmed into a comput-

er with ease due to the modular nature of the procedure.

3 Appendix C provides a listing of the FORTRAN code for pro-

gram TWODD, along with an explanation of the input deck.

First, the material properties and symmetry conditions are

3 defined. Next, as the boundary conditions of the problem

are input, the system of equations is set up. Then, the

3 system is solved using direct Gaussian elimination. The

stresses and displacements at each boundary element are then

computed, followed by displacements and stresses at any

3 other points of interest. Other features (inclusion of a

title, initializing counters for loops, etc.) are added

3 where appropriate.

For an isotropic material, the only material properties

required for input are Young's modulus (E) and Poisson's

3 ratio (v). The shear modulus (G) is computed from these by

I
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2 1 <2.63)

For an orthotropic material E1 , E 2 , G2, and iv 12 must be

input. If symmetry of geometry and loading exist in the

problem, they may be incorporated to reduce the number of

unknowns in the matrix equation. For example, suppose x - 0

l is a line of symmetry (Figure 2.5). Then the conditions at

element 2 are determined by those at element 1:
2u 1- Iu D -2 122.4

2 1 21 1D

I u + 1 u  2D  + 1 Dn n n n
2 1 2 1

Y

I In n

II I
1 1-

-X 11X XI x

3 Figure 2.5. Line of Synmuetry

1 2-15
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In place of the original system of equations,

1u - 1c aD + 12c 2D + 11c sD + 12c aD (2.65)

1 i n 11 1D s 12C 2D 11C 1D n + 12c 2D n2.66>

2U M 21 1D + 22c 2D + 21 1 2 D + 22c 2 (2.67)
s ss s ss s en n an n

2 U-M 21c ID + 22c 2 D + 21c 1D + 22c 2D (2.68)
n nI 6 na 9 nn n nn n

a new system of equations may be formed:

tu -1 c ID + 12c 2D + tic 1D + 12c 2D (2.69)
Sas 8a as n n an n

u 11 c  1D + 12Cn2D + it 1D + 1 12 C 2D (2.70)n nM s nis nn n nn n
2D - D (2.71)

2D = + 1D (2.72)
n n

By substituting the last two equations into the first two,:,

5 these may be rewritten as

I1 u - C11C - 12 )1D + C11 c  + 12 12.73)

Iu m (1c - 12c ) D + (Cn + 12c )1D (2.74)
n no no a nin nn n

2 D - 1 (2.75)

2D + 1D (2.76)
I n n

Now, instead of solving four equations in four unknowns

IIDI ' 2 D 2 D n,), only the first two equations in two

unknowns must be solved. The conditions at element 2 are

I then computed from the last two equations. Thus, appica-

3 tion of symmetry cuts in half the size of the matrix equa-

tion. If two lines of symmetry exist, then the size of the

I matrix equation is reduced by a factor of four.

I 2-16
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In order to solve problems involving infinite domains

with a remotely applied stress, changes in displacement and

stress are considered. This is done by adjusting the bound-

ary conditions of each element to include the negatives of

the tractions that would exist if the elements were not

present. The solution is then obtained by summation of the

stress and displacement changes, assuming zero initial disr-

placement throughout the plane.

After the system of linear algebraic equations is set

up, it may be solved using direct Gaussian elimination with

no pivoting. This is because the logarithmic terms in the

influence coefficients make the matrix diagonally dominant:

a nearby element has more effect than a faraway element.

Since the diagonal terms account for element self-effects,

these coefficients are larger in magnitude than the other

coefficients in the corresponding row/column.

Once the discontinuities at each element are deter-

mined, the stresses and displacements are computed readily

as the sum of the influences from each element. In order to

reduce the size of the program, only one subroutine is used

for all influence coefficient calculations. The coeffi-

cients computed are the functions f ,X fly, ... , f y in step

It above (The Method). Coordinate transformation of these

coefficients allows calculating the ij A 's and iiD 'a, while

no transformation is required for computing conditions at

non- boundary points.
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I C. Stress Intensity Factors

When dealing with problems involving cracks in struc-

tures, a very useful parameter is the stress intensity fac-

tor, denoted by K. For two-dimensional, elastic fracture

mechanics problems, this measure of the intensity of the

I stress singularity at the crack tip may be decomposed into

two modes (Figure 2.6): Mode I is the "opening" mode and

Mode II is the "shearing" mode.

If an infinite plate contains a single crack (gure

2.7), the stress intensity factors in a region very close to

I the crack tip (the near-field solution) are given by (3:79,

i 81)

SO,

Mode I:

a - coo e/2 (I + sin 0/2 sin 3e/2 (2.77)Y)
I Mode II:

K
T - Cor n/2 1- sin 6/2 sin 3e/2 (2.78)

2-mi:-

For a problem in which the stress field in the vicinity of

the crack tip is known, the stress intensity factor= may be

determined by a limiting procedure (3:343):I
I - al o 2 _r [con /2 i + sin 6/2 sin 38/2II r~smal U C(

(2.79)

I
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I Fue .. oodnt or theNa-ildTlt o

Y

I pI 4ml c]

I x

Figure 2.7. Coordinates for the Near-Field Solution

xl -reli T -V -2ncon e/2 (i+ win 0/2 win 3e/2

(2.80)

where r in the distance from the crack tip.

Due to numerical inaccuracies associated with digital

computers when dealing with singularities, the stress inten-

sity factors in this study were obtained by applying a least

squares Unear fit (1:264) to a plot of ai~i: vs. r (or

TY---r vs. r for Mode MI). Here the stresses are calculated

directly in front of the crack (O - 0). Figure 2.9 depiatse

a typical curve generated using the DDM, along with the

I associated linear fit. Note the inaccuracy of the solution

near the crack tip (r - 0). Far from the crack tip, the

near-field solution is no longer valid. Therefore, the

solution tends away from a straight line there.
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I 2.400 TYPICAL CURVE

CT)

I -

Q_ 2.200

I

1 2.000

I

1.800
Linear Fit between: 0.20 and 0.60
Intercept Value: 1.8783

i I111 ~iIIIii~~ mmi u mm~mm mm
.600 O01 51 1

0.6 ....0.20 0.40 6'..60 0.80 100

* r (n)
I
I

Figure 2.8. Typical Curve Generated from Application of
the DDM
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I The suitability of the straight-line fit may be deter-

mined by examining the index of correlation (1:264-287),

defined for an nth-order polynomial fit to m data points by

I 2

r , r - - (2.81)

in which

fn T

22

Yikcy.v (2.82)
k1

2 1 y _ M 2 2.83)
Y " C~ Yva T y

j=1

d- lY(v = I Yj C2.84)

U J9 W

The best-fit polynomial is

y M Z7I c (2.85)

I
with the coefficients c. being determined by solving the

linear system of equations

b. c. v. i - 1,2,...,n; j 1 1,2,...,n (2.86)

where

b .. - (2.87)

I Tn
% x i - 1,2,...,2n-1 (2.88)

k=i
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I x I yv 1 xYki m ,2, ....rn (2.89)

k=

and (xk, yk ) are the coordinates of the Ath data point.

For a linear fit, the definition of the index of corre-

3 lation may be expressed as (12)

ii m mh

Xk~ -m Xk Y

ki k=i k i

Xk MW L Xk E Yk- I: Ykk= k= i k = i k= 1

(2.90)

3 The value of rfy may range from zero to unity. The

closer r, Jy is to unity, the better the fit. A perfect fit

is represented by a value of exactly unity, while an

extremely poor fit produces an index close to zero.

D. Modeling Considerations

Because the relative displacements of the surfaces of a

3 real crack are not constant (as is assumed for the DDM ele-

ment), a method of modeling a crack was chosen which would

I more closely resemble the true situation (Figure 2.9). Each

3 half-crack (containing only one crack tip) was discretized

into at least three DDM elements. For the coarsest case,

the element at the tip was one-sixth the length of the half-

crack, while the element furthest from the tip was one-half

I
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Physical Model of One Half-Crack crack tip

L aII!

DDM Models of One Half-Crack

3 Half-Crack Elements:
'-" crack tip

6 Half-Crack Elements:I

~ a~a

3 192 Half-Crack Elements:

a a
164at-N__64__at_

r_64 at a crack tip

,2 3 6I

Figure 2.9. Modeling a Half-Crack Using DDM Elements

I
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the length of the half-crack. This left the middle element

with a length of one-third the total length.

Finer element meshes were created by dividing each

element into equal numbers of smaller elements. Thus, a

result stating that "192 half-crack elements wer used"

means that 64 equally-sized elements were used in the first

one-sixth of the half-crack, 64 equally-sized elements were

used in the next one-third, etc. This allowed the crack to

3 more easily take on the elliptic shape it would assume under

a tension loading.

I
I
I
I
I
I
I
I
I
I
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I

III. Isotropic Development

A. Theoretical Development

The basic solution required for the Displacement Dia-

3continuity Method for an isotropic material subjected to

plane strain is given by Crouch (6). Using the notation

I from Chapter II, the displacements due to a constant dis-

placement discontinuity along a line crack defined on

R I < a (Figure 3.1) is presented as

I u Ci 2(1- v)f yf..J + D I- 2(I..- 2v]
~(3.1)

1'

I negative surface 1 n positive surface

I
- +

D u. - u M constant along crack1 - 6

D U__ u- U__ = constant along crack
n y y

I
~Figure 3.1. Displacement, lucontinuity along a Line Crack

I :3-1
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!
I= 200fI- + D[ 2(1 - v)f j

(3.2)

I where

I fRS - 1arctan - arca)I~4( P< o a +> a) .
- ( i- ) In ( -R - a) 2  

+ ) ,1 2*1

+ Ci + a) In(R + a)2 + y C33)

D mu - u- - constant. onI1<a (3.4

Dr= Ul -- u - constant on I1 < a (3.5>
and the derivatives of f(R,Y> are

i+ ) In [C - a) 2 + +..~a (3.]1,)

IIc- - - ar-tan

4r(I0 ( _a2 y2(R +a) 2 +3.8)

M-- ~ - + 1 r - 1
4n l - P>' 2 +~ Y (R +a>' +~a

I (3.9)

The stresses for t he isotropic mat erial are dot-ermined

from the strese-displacement, relationships:,x 2%, X, YY
a_ 20 [ ] 1-V I

Y9 1 - 2v. ~ L)U..
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I
3G (,r )C3.12>

E
where 0 - 2(1 4 i t he material shear, modulus.

Applying coordinate transformation, the displacements

in the global (x, y) coordinate system are (7:91)

I~~fi u*D[ (1"2) f

+ (sin f c1 - coo 0 .ee

,, - 1 - 2v co, t9 f - 2<1 - P>) sin, e

-,j[of. + sin 0 i l ] (3.13>
C XY 'RR)]

u - D rG + (1 - 2>) COo j f'r. + 2(1 - ) sin $ flI- Y,(Coo f 'R9 +.. si f')]I
I [- ( - 2v) sin 1 f. + 2<1 - V> coo

(Gi nL - f (9fRc 3.14)

3 From these, the stresses in the global coordinate sys-

tem are determined to be (7:92)

a 20 D 2 coo 2 9 sin 20 "f, x

+ ( (coo 2. f o y- sin 2. f ,,,Y]

+20 Dn r - (sin 2 f _-_. + coo 2$ f-,]]

"20 D 2 f9 sin 2$ f'3.

-,[co. 20 f., - win 2$ f

I+ 20 D [ - ,,n 2, f AST + coo 2$ f77]

3 (3.16)

I
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- 20 sin 2f coo V

I + in j2 f,_ . oo. s 20

+ 20 Dn [-i(coo 21 - sin 2j9 ( 3.17)

with f .. _ and f.V9 given by

+1y ,yyay2_y2 
R+ a>

2 -22 2 + .._2>+a)2 (+a - 1 a

(3.19)

• " " 4. - ,.[ <(iaV _ a>a2 + .> <( > + a) 2, + .>21 (3.19)

The functions -f ix(R,,) through fy(F,Y7,S) (Chapter

I) can be determined from the form of the displacements and

3 stresses:

U x = f x(R,Y,9) D + f ( ,) D n  (3.20)

I u - f,, Do + f (R,Vj8) Dn  (3.21)
Y 2Y

ix = - f x<R,V,$> D + fyCY> Don  (3.22>

Sf 4x(R,Ft) D5 + f 4y D (3.23)

Txy = f" (R,y,0) Ds + f Oy(R,V,) D (3.24)

3 The required equations now exist for computer imple-

mentation of the Displacement Discontinuity Method for an

3 isotropic plate in a state of plane strain (program TWODD in

Appendix C).

I
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3 B. Stress Analysis Application

To verify the stress solutions used in program TWODD,

the case of a circular hole in an infinite plate under uni-

3 axial tension was considered (Figure 3.2). The analytical

solution for the tangential stress of this problem is given

3by Timoshenko and Goodier (21:91) as

a -S t- S I + 3 - cos 2e (3.25)
t 2 K r 2) 2( + r4)

I
* S

I
I

2a,I ox

3 r

I_

SI
Figure 3.2. Circular Hole in an Infinite Plate %awdor3 Uniaxial Tension (Iwotzropic)
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3 For the case that e = 00 (along the positive x-axis), the

solution becomes

a2  a 1
o~ - -+ 3 C 3.26)

Program TWODD was used to solve this doubly-symmetric

3 problem using as few as three, and as many as 192, elements

per quarter circle. Figure 3.3 indicates that even for the

case of three elements, the solution obtained using the DDM

3 is extremely accurate.

3 C. Fracture Mechanics Applications

Since the purpose of this study was to validate use of

the DDM for fracture mechanics applications, the following

5 problems were solved using program TWODD: (i) offset paral-

lel cracks, (ii) slanted embedded crack (45* angle), and

(iii) single edge crack near a hole.

1. Offset Parallel Cracks. The first fracture mechan-

3ics problem analyzed was the case of two offset cracks par-

allel to each other (Figure 3.4). The solution to this

problem for an infinite plate was determined by Rooke and

3 Cartwright (19) to be approximately

Location "A": K I 1.77 psi In 12

3 Location tEB"": K 1t.06 psi in1/ 2

with an applied stress of I psi, and dimension "a" equal to

I2 inches.

1
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OFFSET PARALLEL CRACKS - ISOTROPIC
~'2,400

* 2.000

1 800Half-Crock Elements:
1 2. 48. 192
Infinite Panel

1.600.....i6.....0

0.00 0.20 0.40 0.60 0.80 10

r (in)

N3.200

.C
3.000

CL

3 2.400

2.200 LocatIofi "B"
Half-Crack Elements:

2. 48. 1925 2.000Infinite Panel

00

Figure 3.4. Offst Parall Cracks In an Wniitte Plate3 (Iuotropic)
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I
For the same configuration, the DDM yields the values

in Table 3.1, indicating good convergence.

I
Table 3.1. Offset Parallel Cracks (Isotropic)

Elements K (A) K B>

12 1.879 2.023
48 1.7871 1.918

192 1.756 1.886

I
I 2. Slanted Embedded Crack (450 Angle). The second

fracture mechanics problem analyzed was the case of a crack

at a 45-degree angle to the direction of the applied load in

a finite panel (Figure 3.5). Rajiyah and Atluri (16)

I describe a boundary element alternating method which they

used to obtain the solution to this problem:

I K - 1.378 psi i / 2

5 when the applied stress is 1 psi. For an applied load of

1000 psi, the solution would therefore be

Kz - 1378 psi in 1 ' 2

For this 1000 psi load, the DDM yields (with 192 half-

crack elements) the values in Table 3.2, where "Length" is

3 the size of each element along the outer boundary of the

part (in inches). Again, good convergence is demonstrated

3 - this time for a finite plate.

I
I
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I SLANTED EMBEDDED CRACK - ISOTROPIC
,, 2.000

I

-~1.800

1.600

I

1.400
Border Element Size:
0.125", 0.25", 0.5"

1".200 6'" '"1 ' ". 1 .1". 16' 1 F Ia aI0.00 .20 0'6....40 0.60 0.80 1.00
r (in)

+ indicates

t t t .mIdpoint.

12.5

I2// x 192 half -crack

ICI I x * -qually spaced

Figure 35. Slanted Embedded Grack (Isotropic)
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Table 3.2. Slanted Embedded Grack (Iotropic)

Length K X Error

0.50 1382 +0.3
0.25 1382 +0.3

0.125 1381 +0.2I

3. Single Edge Crack Near a Hole. The last fracture

mechanics problem analyzed was the case of a single crack

emanating from a hole at the edge of a finite plate (Figure

3.6). The solution to this problem, according to Rajiyah and

Atluri (16), is

K I - 3.493 psi in 1 ' 2

under an applied stress of I psi. Since this is a Mode I

problem, K - 0 psi in1 ' 2

3 For a I psi load, the DDM yields (with 96 half-crack

elements) the values in Table 3.3, where "Length"', again, is

the size of each element along the outer boundary of the

plate (in inches). Notice that convergence is slower for

I this more complicated boundary. However, the trend of mono-

tonically approaching the solution as the number of elements

increases is still evident.

I
I
I
I
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I EDGE CRACK NEAR HOLE -ISOTROPIC

S4.400

IS
M. 4.200

* 4.000

* 3.600

r (n)
EDGE CRACK NEAR HOLE -ISOTROPIC

C0.000

a-.010

-0.020

-0.0301

-0.040

Border Ekauwnt WeZ:

-. 5 1 0.125". 0.25". 0.5. 1.0"

0.0 .0.. ....... ....6is.i '66 6

IF r (in)4e*qMUy spaced

40

Figure 3A8. Single Edge Crack Near a Sole (Iaotraptc)
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Table 3.3. Single Edge Crack Near a Hole (Isotropic)

Lengt.h K X Error K
______ II

1.00 3.785 +8.4 -0.015
0.50 3.707 +6.1 -0.013
0.25 3.663 +4.9 -0.011
0.125 3.635 +4.1 -0.009

I
I
I
I
I
U
I
I
U
I
I
I
I
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I
IV. Orthotropic MaterialsI

The use of laminated composites in the construction of

aircraft components has led to complications in problems of

fracture mechanics. The theoretical solutions for isotropic

materials, by themselves, will no longer suffice for deter-

3 mining stresses and stress intensity factors in modern

aircraft parts. The isotropic DDM, however, may be modified

U to include specially orthotropic materials. That is

accomplished in this chapter.

A. Theoretical Development

Reading through Crouch and Starfield (7), I noticed

I that for an isotropic material the form of the displacement

solution required by the DDM could be determined from the

solution to Kelvin's problem, which involves a concentrated

load applied at a point in an infinite solid. If the load

is distributed uniformly along the x-axis between x - - a

and x = + a (Figure 4.1), integration yields the solution to

a constant traction applied to a line crack (7:48):

P P
ux M- C(3-4tL>f + yf I + - [-yf 3 <4.1>20 .y 20

*P P
u - -I- -yf ] + --K [(3-41))f + yf 1 (4.2)y 20 ,x 20 4

where f(x,y) is the same function as that in Chapter III for

4
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-P x

* x

I Figure 4.1. Constant Tract-ion Applied to a Line Crack

I the isotropic DDM.

ony Differentiating these displacements with respect to y

xPY 0 ly 'YY -f - yf J ( 4.3)

-A-f yf]I+ (4-4v>)f +f. - 44
K' (44)Iy 0Y Y

These may be written in the form

uX - P xI f oy+ yf ' I +P YECf Ix+ Dyf 1 (4.5)
u -YMP XIEf Ix (yf J I+ PCYE f *oy yf YY I(4.6)
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I
where C, , ... a are constants which depend only upon

material properties.

Comparing to the solution presented for a constant

displacement discontinuity (7:81),

u m D [2(1 - v)f y- yfxxI + D I-(I - 2.)f x - Yf xy

<4.7)

u Y D x( - 2v)fx- y] + Dy 2(1+y - ) ,y- yf,xx ]3 (4.8)

and realizing that f xx= -f , it is seen that the forms

are identical. Therefore, in developing the displacement

discontinuity solution for an orthotropic material, I used

the solution to a constant traction along a line crack as a

1 starting point (7:202):

+q 1q 2 P2
122c <q - q ) 2

66 x , ? qx2Yl -
I1 2P ( Y~ I q2)y(49

21Tc P (q-q),)- 122,,,Y22 2J

2rc6C - q 2  xP[12(4iY'r) 2 (FCY 2)0

" P [I2(R,9,, ) - 2l<TC,
I

21TCOe<ql - q 2> Y= I J a

where

I
I
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I 1 ~ - rAL^L - 2L j

- / -a+ -i-]n r ( )+ /+ ( a +..J Inr

, + B4.11)

I (", ,r-
2 2-(i A4 i.](K

+ ( ,, + a + nA )G < - - - ] ( 44.12)

1(R- a> + AB Y/A

Y/<"r,AL9 (y arctan C 4.13)

-~. arctanf~ [4ia4 4.14)

+I + a) 4- 1B.Y/A J

rAr - ( oe' 4- etBhi a )j / - ( 4.1)I 2 ,
A" c(r 2cot+ sin ,/r (4.17)

cxx 11 12 x , x

7 C 2 0 u (4.21)

and is the angle measured counterclockwise from the global

x-axis to the Line crack's local *-axis. By dif'ferentiatingI

I
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I
u and u with respect to y only, we can obtain the func-

x y
tions required for the DDM when the material is orthotropic.

If the form of the solution for a constant displacement

discontinuity along I x < a is assumed to be

uX - D{ [91(71 92( 1>] + [er)<' 92- 2>)

+ D{YC[ln r1<Y)/r2(r)] + jID[n r1(r)/r2Q-_)]} (4.22)

I u - x{E[e [° , - 2,-I>] + F[e ) - 9(2')]}

+ D {[In , r. r)/r C> )] + 0[,_n r (r)2,?]} (4.23)

then the coefficients 4, 1B, ..., Q may be determined by

requiring u and u satisfy i) the appropriate boundaryx y

conditions and (ii) the equations of equilibrium. Coordi-

nate transformation can then be used to represent u and u

in terms of the local discontinuities D_ and D_.x y

i The solution to constant displacement discontinuities

D_ and D_ over a line segment of length 2a (see Figure 3.1)
x y

for an orthotropic plate in a state of generalized plane

stress is thus given by (see Appendix A)

I
I
I
I
I
I 4-5

I



I

Su x  +* Q D [ e2Q ) ]con t9

*

-rQD. ~1 q- ( e 0(r2))]sin

Y2 r 1

+ Q D- In (y3/r (r ) - In(r] cs

x1, Y r 
r > r < 2>

+D,, -xIne(,, Wr- 0 3)7 - In c,2 - je2 o
1 1 1 2 1 (r," 2 3/ 2

(4.24)

u -I [r( / . ) In r / )c os J
12 x [nLir 1  2  1 J(lr Cv2>

I yher

q [l(erl - 92(r>)) - !-+ )/]sin 9

- D. -l~l~ / In r sr~ in t

1 -~~~~ 1'2 [ 1 1)1 2]

DI5 rife Cy - 92 C2') !2(91CY2 02C2-2>)] coo

(4.25)

where

I j'/(y.A) 1e <. > - otan LL<.6

1(. - L- a.-+A (4.2

e2 (y) L c- ar J (4.27)

2~ +. a + 1 B YA

[A (r.) _ Ac a>2 + B (y a a)+ Ciy]1'12 (428

* 4-6
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r 2 L" L > [A L + a>2 (4.29)

A. C 2 cos 2 j + sin2 ) > / 2V (4.30)L

B. C1- y2) sin 21 9 2 (4.31)
vL L

C m (r 2 sin2 1 + cos 2 2) / (4.32)!,.

I r r 2Q 1 -_ (4.33)
S2nqy - q r

ccr 4 + Cc2(c + 2c ) - c c r2 + - 0 (4.34)
166% 12 12 66 11 22 %, 22 66

q L -(crli -c )/(c12 + tee) (4.35)

and c are the orthotropic moduli:Lj

EEEIC - C - I
1 12 2 21 1it1 -, 12 V -. , V - V V
12 21 12 21 12 21

E
C22 v 2 v 1 G6 12 (4.36)

12 21

I The stresses for the orthotropic material are determined

from the stress-displacement relationships:

a M c u + c u (4.37)xx 11 xx 12 y,y

Cy- c U + c u (4.38)
yy 12 xx 22 y,y

T c u + c u (4.39)
xy 66 xNy 66 y.x

For a coordinate system 3,Y at an angle j with the global

(material) coordinate system, the stress-displacement

3 relationships become:

o'xx 1 coiCOS j9 uxA - Cl sinu 9 Uxy

+ c sin 0 u + c cos u (4.40)
12 y.t 12 YY

I
I 4-7
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a c cos u -c sin 0 u
yy 12 R 12

+ c sin P u + c cos i u (4.41)
22 yX 22 Y-Y

T C si n 0 u + c Cos u

+ c Cos u - c sin 9 u - (4.42)66 y,x 86 Y,y

Thus, for the case of constant displacement discontinu-

ities, the stresses may be written (Appendix A)

- S c s - sin cos D... [L cos21 2 11

S+ (R - R )(c 1+c 2 cy sin cos

31 32 11 1212

- <R - R )(c sin j - c cos 2 / )]I41 42 11 12 12

- Q D [S1c 1sin t cos 9 - S2 c sin 2
,

22

a + QSc sin cos + Sc .cos i

- S - R )(c cos 2  - c sin 2 t9 co )31 32 11 12 1

(R - R )(c 1 2 + c 2 /r 1 sn cos ') (4.43)

(R41 - R42 ) 1c 12 19- c2 o / 2 >1

' -Q D Y S ic coso - c sin 2 cosI 2

- S c sin -S c sin cos2
3 22 4 22

+ (R 4- R )(c + c 22Ir r 2)sin cos 0

- (Rx- R4 2 )(c silr24 - c8cos 2  / )
I ~ ~- Q D... [Sc s"in co°" B - S c is 2i

+ S c sin corn + S c corn
3 22 4 22

-(R I- R 2)Cc con2 - c si I3 2 1 21

31( R( +c/r)sin cos ] (4.44)

4"8

I



l
T xy Q D. c [s1sin 0 cos 0 + s Cos2 °

- Ssin 0 cos 0 + S sin 2 1

22
( R 31- R 32)(Sin~i + COS2 I rr2

+<R41- R 42)( - /r I 2)sin i cos

Q D c [S sin21 + S sin 0 cos + S cos2 9- q 88 ~aS 2 3

- S sin 0 cos t - (R - R )(I - hr I2)sin t cos t

-(R - R )(cos 2 + sin 24 /¥i¥2>] (4.45)41 421

Iwhere

q q2 q I

S m R - R (4.46)1 ¥ 11 ?' 12

S i2 R - (4.47)
2 ?- 21 T 22

q2

II ¥

q q

S -R -R (4.48)
3 1 r 12

-- R -R (4.49)
4 21 r 22

A (R +a>a)2 + . ( + + Cy-

L t i y

+ (4.50)
A % R + a>2 *B(RCac + V+C i 2

I4-9
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i i(R- a3 /

A ( - a) 2 + B LO- a)y + C.y

(rj + a) / . ~(4.51)
2 -2

A ( + a> + B (R + a)4y + Cy
LL .

A.(i - a)+ 1B -
L, 2 L

2 -I
A (< - a) + B(R -a)y + C iy

A.(R + a) + -!B
2 i. - (4.52)0

A (R + a) 2 + B. R + a> C y2

I and

UR 4L [In (r.)/r 2.))]

i1 -B (R - a) +C

A. AR - a> 2 + B. CR - A)OY + C y "2

IB R + a > + C < .3
2 -23A(A(R + a) ± + B.(R + a)v + C

Thus, the functions in Chapter 11 for an orthotropic

material are

I

I



fix Q r2 [(91 r I - 02 Cy1) - 91(r2) - e(r2)]cooe l

+ Q [in (r(r)/r 2(r)1) - ln(rr2 r2r)aI in

I (4.54)

_] _ _ <_,(or, C, .)]°, co 1

- I

_Q D. n (rir/r,<() - In(Tl)/r2C(2> coo<~~~r > - 0 2 (2r1 )2 2(2) snjl"'" rr2

I (4.56)

(,a -- 4a( ) 2(rr)r) - t(" r )/ r0(2 ) co o

?~) 
-ra )

1Q (r ) R))in r 2  il 2 2J

(4.57)

<fxrc,y,lo> - Q [st ctcoo S - c witn P coon to
S 9c 12sin- S4 c 12win ji co0o co4

+ (R at - R 92 Xcitt+ c,12 /r I 2 sin J Cos J1 - -1 - R 2Qc .in 2 - c 1(coo 20 /r,2> ]  <4.58>
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1
- - Q [S C 1sin Jq Cog J- Sc 2 1SirI

2 ~

+ S 3c sin 19 coB Jw + S c coB J9812 4 12

<- (R - R 32)(c c os2 J1 - c 2sin2  '0  12,r)

+ (R - R )(c + c12/r1-2)sin Jt COB jo](4.59)41 42 11 12 2J

'f4.(R'Y"'J )  Q [SIc 1cOB 2 1 - Sc 12sin t9 co B

-S c22sin2 J9-Sc sin j co j322 - 422CO

+ CR31- R32 C12 + c22/y 1 2 snrl coo

(R 4- R 42)(c12 sin 2 - C 2 2 COB J /r- y2 (4.60)

14y ,,j'Y " - Q [S1 c12sin 0 coB JP - S2c1sin 2

+Sc sinj S 42coB 2 j03- )22Sr CO 422

-(R -R 32)(c12Cos2 c22si2 j 1
+ <R 41- 42 Xc12 + c22, 1y2 >sin J12c j C4.60

- S 9sin jo coo jtq + S sin z 
2 i

+(R 31- R 92 )(sin z 
2j + coo 2 19 /r I r

(R41- R 42)(c - I/7)>sin j9 coo Jo] (4.62)

_f5YR,5,jt) - - Q c., [Ssinz 
2j + Sin cooJ

+ SIa coo2 j0 -S sin Jj9 coo J a

Recalling also from Chapter 11 the convention of com-

puting element self-effects on the negative side of the

discontinuity, determination of the values of coefficients

I
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I tB and itB requires computing the following limits withI 8 nn

- 0:

II
e e(r,>)) -r (4.64)

lii 
4.65)'-#' [I 1> n(r1< -Jnr2)/r(r2)] -

Thus,I
u Q "-rr)] (_TO . cow - D- sin

a 2' ] RJ

2n q -(-n D, coo 1 D win

1q 2i e -o 'q-i wi

M Do co D-_ grin
2 q 1 r2 - q ly 2 r 1.'

I .~+ -[,D0oo 1,9 _D,- ., in,.

I
and

u - .- < <- ,,> D win , , . oo. <o

Lr 1 _"3] tyrI m-- -.. r. .-- 2<' - <']<-: r(,>_. ,.. <,_ ow. <,
n - q(n D win + D- oo

2 q 2  - q 2 rt 2,D n

M 2 q D- sini + < D, - co<".

1 + L D win t"g + iD- coo (4.67)2 2jrc y to

Therefore, the local displacements become

I
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I
-- . - L - . - L -

u - - u cos + su-gin
* x x y

i + -(Cog2 i0 + sin 2  i.t)'D_2 x

=. + i D (4.68)I 2 -

6U - f VU = - -x  sin + , Uy CosIn Y XY
- + -(sin2 + cos 2 

i)D_
2 y.+ 1 '.D (4.69)
2 n

Thus B" + -, an stated In Chapter 11.
B ora2

The required equations now exist for computer imple-
I ~mentation of" the Displacement Discontinuity Method for ant

orthotropic plate in a state of generalized plane stress

(program TWODDO in Appendix D). This method may also be

used to determine the solution for an isotropic plate in a

state of generalized plane stress. Since the orthotropic

solution is singular for a truly isotropic material (E - Ex y

- E implies q1 - q 2 - I and r r " 2) it is not possible to

use E - E - E directly. However, if the values of E andx y N

3 E are within a few hundreths of a percent of one another,

an isotropic material will be sufficiently represented.I
B. Stress Analysis Application

To verify the stress solutions used in program TWODDO,

the case of a circular hole in an infinite plate under uni-

axial tension was again considered (F ,ire 4.2). Lelhnitskii

(13:163-171) demonstrates that the tangential stress along

the boundary of the hole is given by

4-14
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I
I CIRCULAR HOLE - ORTHOTROPIC

tN800.0

I a

v 700.0
0 xxxxx 3 Elements
o 00000 192 Elements

600.0 800 Elements
Applied Stress:

(E) 100.0 psi

- 500.0 Infinite P snel
C "R= r-a

I l 300.0

I 200.0

100.0 1 41 1 1 11 1 1 66 . . 1 . 02 01 0.00 0.50 1.00 n)

I
5 r

Figure 4.2. Circular Hole in an Infinite Plate under
Uniaxial Tension (Orthotropic)
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ht " p E M + (1 + n)sin2e ]4.70)

wher -- (E/E2) 1 / 2  

(4.71)

n m (E /0 - 2v.1 - /24.72)

* and

1 si 2 i24 cos.7-- sin 2 -sin2 cos g + (4.73)
Et  E2

I for a uniform traction p at infinity.

For the case e - 90 ° , the maximum stress is determined

to be aot - a - pQ1 + n). Then, assuming a boron/epoxy

laminate CE 1 30x1O6 psi, E2 I 2.7x1O psi, G l 0.65xt01adnt 2E 12

psi, and v1 - 0.21), the theoretical maximum stress at the

edge of the hole is a - 823.9 psi. The results from pro-

gram TWODDO were extrapolated to the edge of the hole by

assuming an inverse fourth-order least squares curve fit

3 (1:264) is appropriate. The results are shown in Table 4.1.

I
Table 4.1. Tangential Stress at Edge of a Circular

Hole (Orthotropic)

Elements o at 9-90* X Error

3 304.6 -63.0
12 400.9 -51.3
48 482.6 -41.4
96 523.8 -36.4

800 690.0 -16.3

I
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I

The extrapolated stress at the boundary converges very

slowly due to the presence of stress singularities at the

ends of each element. The difference in stress values a

short distance from the boundary, however, is less than 2X

when the 3-element case is compared to the 800-element case.

Thus, the stress solution is accurate except very close to a

boundary element.I
C. Fracture Mechanics Applications

Two of the fracture mechanics problems analyzed for an

isotropic material were considered again for an orthotropic

material: i) slanted embedded crack (45* angle), and (ii)

single edge crack near a hole. Analyzed first was the case

of symmetric edge cracks emanating from a hole.

0 1. Symmetric Edge Cracks Emanating from a Hole. This

first fracture mechanics problem involves cracks extending

from two sides of a circular hole in an orthotropic panel

(Figure 4.3). The solution to this problem is presented by

Tan and Bigelow (23) as

K -S i'- F (4.74)

i where F is a correction factor based upon the geometry and

the material properties.

5 The case analyzed was a [0"3 graphite/epoxy laminate

having the following properties and configuration:

I
I
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I
I SYMMETRIC HOLE CRACKS - ORTHOTROPIC

N3400

3200

I
-3000

2800U
2600

Border Element Size:I 2400-- 0.125", 0.25", 0.5", 1.0"

I
2 2 0 0 ,, ,,,,,,,,,, i , a,,,,,,,,,

0.00 0.20 0.40 0.60 0.80 1.00I ~ ~~ "l,!,(in)

-~ a I W halfr crack
" I elements

H L
x3 I ~ - 4 -2R 24 elenment~g per

I I~EI~I. line of smer
S

I Figure 4.3. Symmetric Edge Cracks Emanating from a Hole
(Orthotropic)
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I
3 E - 11.72 GPa - 1.70x10 6 psi

E = 144.8 GPa = Z1 .0x106 psi
IG XY 9.65 QPa - 1.40x10 6 psixy

KYi e = 0.017 S- 1000 psi

a = 1.60 in 2a/W = 0.20 2R/W = 0.125 H/W = 2.00

I For these conditions, Tan and Bigelow (23) predict a stress

3intensity factor of - 2394 psi in 1 ' 2 (F - 1.0679).

Program TWODDO produced the results in Table 4.2 for 96

half-crack elements.

I
Table 4.2. Symmetric Edge Cracks Emanating from a

Hole (Orthotrop i c)

Length K X Error

1.00 2327 -2.8
0.50 2302 -3.8
0.25 2285 -4.6
0.125 2274 -5.0I

3 2. Slanted Embedded Crack (45' Angle). The geometry

for this problem is similar to that for the isotropic came

I (Figure 4.4). The material properties used, however, were

E X 30x0 psi G - 0.65x0 psi

E 1 2.7x1O6 psi V e - 0.21
y xy

which corresponds to a boron/epoxy laminate. Using a finite

I element alternating method, Chen and Atluri (4) determined

the Mode 11 stress intensity factor for the loading shown in

34-19
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I SLANTED EMBEDDED CRACK -ORTHOTROPIC

N 1.700

* _:

3 1.600
Q-

I 1.500

1.0
1.400

Border Element Size:I1.200 0.125'. 0,25". 0.5"-

1.100 iip ii11111 ul mi iiii111 I 11

0.00 0.20 0.40 0.60 0.80 1.00

y 
A r (in)

X oimU hmr-cod

Figure 4.4. Slanteod Embedded Crack (0rthotropic)
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I
3 Figure 4.4 to be K 1.1097 psi in 1 / ' The results

obtained from program TWODDO are compared to this in Table

3 4.3 for 192 half-crack elements.

U
Table 4.3. Slanted Embedded Crack (Orthotropic)

Length K 1  9 Error

0.50 1.116 +0.6

0.25 1.116 +0.6
0.125 1.116 +0.6

I
3. Single Edge Crack Near a Hole. Here, the same

geometry was used for the orthotropic case as was used for

3 the isotropic case (Figure 4.5). The material considered was

a [001 layup of graphite/epoxy with the following properties:

IE 1 20.5xl e psi 0 - 0.752x1 e psi

E Y- 1. 370 psi V - 0.31

For this problem, Chen and Atluri (4) obtained K- 3.2349
1/2

psi in with a I psi load. For an applied stress of 1000

Ipsi,

3 K 3235 psi in1 '2  (4.75)

3 The results from program TWODDO presented in Table 4.4 indi-

cate slower convergence than for the more compact problems

3 analyzed earlier. However, the trend of overestimating the

I
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EDGE CRACK NEAR HOLE - ORTHOTROPIC

-- 4200

I -4000

I
I Border Clem Se:

3400 0.25". 0.5". 1.0r

320 ..... ......I 0.00 0.~~0 0.060 00 10

r (in)

I -EGE CRACK NEAR HOLE - ORTHOTROPIC

-10.0.

I

I - 0. , 0..0
Border Ij!m7*;Size

*-60.0 05.

0. 0.20 4. o. 0 '

IO R-2

] ~4 4O ,,., ,,,_
400

Fig e 4.5. Sin Edge Cr ear a Rolm (ol tc)
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I
stress intensity factor is evident by the monotonic conver

genco of the results.I
Table 4.4. Single Edge Crack Near a Hole (Orthotropic)

Length K X Error
i1.0O0 37:3;4 +IT. 4

0.50 3610 +11.6
0.25 3540 +9.4

4
I
I
I
I
I

I
I
I
I
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V. Conclusions and Recommendations

A. Conclusions

As demormstrated by the results in this study, the Dis

I placement Discontinuity Method may be used as a tool for

both at-rse analysis and fracture mechanics applications.

Its rapid convergence for problems involving Infinite

domains allows for an accurate solution with only a few

elements, as demonstrated by both str s analysis applica-

I tions and by the case of parallel offset. cracks in an iso-

tropic material. The method's accuracy in problems with

boundaries compored of straight. line segment& is also

unqlestionod. <See the slanted embedded crack rosults.) On

the other hand, for fracture mechanics problem. containing

I curved boundaries the DDM showed much slower convergence

than it did in the other cases discussed above.

The Displacement Discontinuity Method has an advantage

over finite element techniques due to the fact that only the

boundary of the problem must be modeled versus modeling the

I entire domain. This, coupled with its rapid convergence,

allows the DDM t-o obtain accurate solutions using fewer

elements& than finite element methods. Mesh refinement i

also accomplished more easily with the DDM because of the

reduction in order of the problem from a two-dimensional

I domain to a one-dimensional boundary.

I
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I The main disadvantage of the Displacement Discontinuity

Method is that the matrix equation developed by the toch-

nique contains a fully-populated matrix. Finite element

techniques are able to use banded matrix operations to

increase their efficiency; the DDM cannot.I
B. Reconmendations

This thesis dealt mostly with development and valida-

tion of a plane stress displacement discontinuity method.

Further research should be done to characterize the tech-

nique. This characterization could include Ci) determining

the range over which a least squares fit is appropriate (a

a function of distame from the crack tip), (CW) obtaining a

rough estimate of the number of elements required to obtain

an accurate solution for a given problem, and (Cii) deter-

I mining the effect of refining the mesh for a half-crack in

another manner (e.g. the method used by Harris (i) for the

plane strain DDM).

Another recommendation Is to improve the efficiency of

Program TWODDO. This could be accomplished by using a

I matrix equation solution routine other than Gaussian elimi-

nation, which i of order N4. Since the program is modular,

incorporating a different matrix-solving algorithm should

not be difficult.

Also, the current Displacement Discontinuity Method t

I limited to two-dimensional analyses. Extension of the DDM

I
5-2

I



I
I to three dimensions may be possible if a 3-Dimensional

Fict, it, ou. Str e.. Met, hod could be developed.I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
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Appendix A: Orthotropic Solution

1. Introduction

This appendix demonstrates that th orthotropic

I solution used in the body of this thesis satisfies <) the

boundary conditions appropriate " olr a displacement

discontinuity and (ii) the equations of equilibrium for a

panel subjected to a state of generalized plane stres.

The first of these requirements (satisfying the

I bournkry conditions for a displacement discontinuity) can be

written in the following form:

l im lirD
YO --U 11 ! x. i x.

where i a x, y. This represents a discontinuity in the

displacement field along a line crack lying on the x-axis

I between x - - a and x - + a. This discontinuity can be

either a shear discontinuity Q n x) or a normal

discontinuity (i - y).

The second condition requires that the stresses satisfy

the equations of equilibrium:I
+ T = 0 C x-direction ) (A.2)

S# r = 0 ( y-dirction ) (A3)

yy~y 2yAI
I
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These equations are appropriate for a thin panel in which

body forces and through-the-thickness shear are neglected.

I The orthotropic solution presented is shown to be

correct as follows: First, the solution for a shear

displacement discontinucity is demonstrated to be correct.

Next., the solution for a normal displacement discontinuity

is validated. The two results are then combined to yield a

I more general solution. This solution is then generalized

I further to determine the displacement field for an arbitrary

orientation of the crack with respect to the material

coordinate system. Finally, the strome for ths general

solution are determined.

2. Shear DimplaKement Discontinuity

Let u represent displacement in the w-direction and let

u Yepresent displacement in the y-directio. Consider the

following displacement field.

*~~ ~ u Q D [arctan( )- rt( i]

- qt - (A.4)
- - r tan x+ aCA)

I [~a xC x . a)>2 + C /rI
"x + a x2 , -, >21

I
A-a
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with

Q " - 12s---Y

2 1

q a Cc r2 _c 3/Cc + C >
1 11 1 60 12 06

2q m (c y2 - c >/(c + c )I-2 11 2 00 12 00

4 2

c c r. 4 + Cc Cc 2c ) - c c 2 + C c - 0
11i 0 12 12 66 11 22 22 00

and

D = const.ant
x

U Then, on the x-axis

QD {2 rn ((V/TI . cY/r 1

r larctan -- arctan .--- (-S)

qr .Yl Y/

Iu -0 CA.T)

y

The limit depend upon the value of x and upon from which

direction y - 0 is approached. The limits of the arct4anent

function are

I lirae ctein m) for lxi > a <AS)

U~i "r rca(r for lxi < a CA.B)I ,0-
l.,o a"ct" -I-, for. I x < a CA.Ao
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I
This mear UK- 0 on lxI > a. If JxI < a,

q2 q

Q D x  - 24 for y-O _

, QDnqf - for y

U Q DiT q 2 - q .r2 for

U -

-Q I n q 2  } oy.

- +o! t- 2Ox +o. o

x2IUx " (A.Ill)

2 x  for y- O

Thus, u and u satisfy the displacement discontinuity

boundary conditiorm

I-
K m

U - U 0 on I I > a, y - 0 CA*)
S - IA

I
I
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The displacements u. and u Ymust also satisfy the

equilibrium equationo:

O * T M 0 C x-direotion > (A.2)

a YDY + T x~ = 0 ( y-direction > CA.3)

which, when combined with the stroe-strain relationships,

r x 11 r12 j , 1fr Y J [12 C22 0: j Y* CA.1I
may be written

c 1u Xx+ c soU - +(Cc 12+c 6)u U o (x) : (A.15)

c22u yY+ C Gu Y 4x+Cc 12+c Go)u -oY y)> <A.16)

Carrying out the differentiation in the x-equilibrium

equation,

c u +c U ( Cc ) >u311 KXN 6 X'YY 12 *. YOXY

cj2 [UK a)(y/r >) 2(x + 4 y/

11 xr2 I1C 2 + a,,] +C/Y)

+c D q 2<x - a(y/r ) Cx + &)(y/r,)
11 xD -a 2 22a

*O*Q(4L x - __________2<x_______ V

+I 2
06Ir2[C > Yr1> 2 EK+03 yr1)1

A-



q, -2<x - &)(y/r )dr 2  -2Cx + )(y/r fr__1
+ cQ D 2 a 2

S. x -i C + <Yr22 2 +&>2 +(y/Y 2 2J

+ Cc + c > D F__________________
12 6r Ir 2  [x -a> 2 + r>2 12

I-2<x + aCyfr 1 Wr 1

E2x +)a> r)>

+(Cc +c > Q D *2x-&C/-2V
1.2 ** r Lc2 ~x-a 2 + Y2 2 2

-(x >
* 2

2<x - a)Cy/r >) c D -2c Q D q2

a)x + Cy/r )22 Ic11 x r 0 x r a

I1.2 *O2
1 2

2(x +aXy/r)> fQD 1--c. q 2

L(x +9 a) 2 + (Y/r > ' 2 x s2o
1 2

(c +c >)
1.2 06 2 D}

2Cx -a)yf) !q q

2 + * (/r >;i 1 1 DF - asQ D 1 2II Q
C c + C -. ~D

I A-6



I

Z(x + a) 2 > qLi: +i &> )2 + cy/r) ~ >~ a 1 2? r G x r r

12 so2 .x

rC <x - a)y/r) Q D J r 2 C>

I I r Ir 2.

-(C
2 4c)e

2x+ a)Cy/r) Q

I "- cxa " "("/23 ,, {% (1 'T- a**)

I -aXy" D1
. I 1 (C 1 1 r: - )>

I q~a -(=, 4 C) e

ICc 2 + CAo

I
I- Cc 42 + * } so> A..17)

I Now, if

11 2s * 12 6At>

I amd if

III~lr C > C +2 C CC

A-T

I



then each term in Eq (A.17) Is zero and x-direction equilib-

rium isnatlfied, Wsing the definitior of q and qv" it,

In seen that.

I Cz 4,Ce

q 12 6 (A.20)1 2z

c 11 2 00

and

C + ce AI
12 06 _A.)

* or,

If Eq (A.22) holds, then x-direction equilibrium is satmsfied.

IThe proof is given ir Appendix 9 (Theorem ).

Carrying out the differentiation for the y-equilibrium

equation,

c u c u +(c c )u
22 y,yy 6 y'xx 12 00 Xxy

CI'Q (x - a) - (y/r1)32/r,

ID

I

I
A-S

I



IC [x) 2 _C? >2 1/-2 EC2-a 2 2 YY ,r

I Cx +a) + Cyr 9 3 [Cx-_.&> + (y/r a)la)

t Cx +. a -l Cy/r a >212

4X 2 2> y/,

1 2 EC- a>2 + y/ a1

C+&>2 - yr1>2 C-&2 CY3 2

(xK+ a>* Cy/r)>2j ECx- -aCy#2' 2)

(xx +a) &>IrJ -Cy?, 9 1

[CK + a> 2+Cy/.- >,]J

+ Cc +c> Dq, 2 ECK - a) 2 _ (Y/ri) >2.3

IC 12 A>200Y/

Cc + c >QD [- [Cx- &>'-/ 2 2 2

[Cx4 a)>2 - Cy/r I

[CX +9 +L> Cy/r 1>l]:

A-9 Cx )~ yy ~/



D x' C[ & 2 y / 2 -" ; ( +  coo' ° " q
I~~ -° a-  + a -2" 00.)_ l2'- -6 °.- %2+ .

I

1 2 2yr>]Ir

D (x .o. -oyqJ a..I.2f
2 + 2 2  r2 Cc 12 cc .1

~1 2 L (Y/r 111 2
x + &> 1*

Q D x -402 _(y/T2 2 2
r-. 60 12 23 q

[L x+ - &> + (Y/r 1 2 2]266 1

Q D CXa2 2 Y r>

+.i i' -i a (/ , a ] c.-a c
r LC' -a &> ~2 32l~ 66 Y., !6 aj

a 2 2C

I *

Cc 12 c 6 qij AM

Equilibrium in the y-direction Is satisfied if

C

22

--- Ce - (Ci CAi- 4)

because each term in the equilibrium equation (Eq (A23)) Is

then identically zero.

Recalling the definiti-raw of qI and q6, and realizing

that qlq, - 1,I
I

A-tO

I



I

c 2  c Cc +a )
-- c -Cc + C>% 222

2 12 c6 a -6

c CC + C )2 -C C Cc +
22 C12 60 22 00 1 - 12 00I - - - __ -__ " •__ __ _

2 06 2 2 2I1 c 1 1 1  r 1 c1 r - c

<c Co o..V x 2: o..,2_ -,V ,cc + co.
2 2 2 c

- C 11 C 6 + <- C 1 c 2- C12 - 2C= c ,e _-_ _ 1 2 __ C o> 1 22 06
c a c - c c

1 1 1 1  c*

I C r 4 + E[C 2+ GC CC+ 2c >],r2 +C

c t [ 11 11 22 12 12 00 1 22060 <A.26
I 2 Cc r- c)

22, . 22 (c 12 + s
I

c c +C c c )
2 00 12 06 1 2 00

I 2 2 2C 22Cc 12 + C -0> C C*r (C C
*02 12 0

2 GO 2 - 22

I ~Cc- c T) +(c 1 1 c )-,_ c +"-c,11 2 o C 11 eo aI02C 1 O
22 so0211 2 00 2 12 06

C1100 ~ 1 GO-c r (c1c2- C1 2 - 2C1cO >r: -c2c 0

.v CC r2 - c>II
2 11 2

II
A-It

I



I

C V4 +1Cc+2 c r2+ccc o 1 2 12 12 0 112 a22 226 0

2c -11 2 00

Thus, y-direction equilibrium is satisfied if

c c r,44c (c 2c )- c c Ir.+c c -0 (A29)11 00 i 12 12 00 11 22 % 2 200

which is the characteristic equation.I
3. Normal Displacement Discont inuity

Again, let u x rpreent displacement in the x-direction

and lot u represent displacement in the y-dir ction. Now

consider a displacement field defined by

Y <r O---2 +Cy/) >

X a)24 + Cy/r 2 1f

r[.Cx + a) + (y/r a.>*a

. t- q 
yr ASO)

Lar~tanH 2) -/ CAtan90>]

with D - constant, and all other variables defined a iny

the shear displacement discontinuity solution.

Following the procedure above, for I xI > a, u Mu m 0

For IxI < a, u - 0 and

I A
H A-1J2

I



U -- D l-im ta Ica
y y rY [rc X - a)

- im -ar-ct..n( ~} (m
2 Y

The Iimdt~g depend upon froin which direction y -0 is

I Approached.

D -R ! 2 (n)} fox.Y-0

U

D (-> !2C-R> for y..O_

3 -QD~n~- for Y-00

Q 1  q2- for y-

Q QDn { q 1 r2  q2 r1 J for. Y.O04

IT1I 2 1 jfor o

I1 a
- Dy for Y-0.0.

Ui CA.32>

yy

A-13



I

Thus, u and u satisfy the displacement discontinuity

boundary conditions

u - u + - D on JxI < a, y - 0 CA.38)
- .

uy - uy+- 0 on I >xi , y-M 0 CA.34)

The displacements u and u y must also satisfy the

equilibrium equations:

c u + c u + Cc + c ) u -O (x) (A.1)

u Cc 1 c ) u -o0 ( ) A.1S)S-Oyy eeyDXX 12 56 x.xy -

Carrying out the difaerentiation in the x-equilibrium

equation (Eq (A.15)),

c u +c u K Cc +c )u 
11 xYxx _O x&>yy 12 00 y,cy

<x- + a) - (y>2)2c.......

ECK + [ > C/(x2' - &>* + Cy// 2 >&I

I x 1 z  (/y~ z  (x + &>' z - <y/r a >

2 2 2 + Yr 2 2

& 1 + ... . .. .

(x+ a)I (y2 + - ' CYxa 1 *(y/)'

1 4

I
Cx,.- .a),- (,,,,) >.,

+ o..o o LCx- a)2' +CyI >''--"I
I
I

A-t4

I



2 q 2 [(x > 2 - & Y/r >2]/ 2

xe, eea) IL ( -C// Ca) - y/=

2 221 2 2

I~ + &>2<[(V>2 x 4- )2-+ (y/. a2]21

[CX + a>2 _ <Y/r >2 3/j 2~
+2 - 2

[(x + + ry'2 ']" 2

I %[ tc(x- 9 ,)- y/r=)=]/r

Cc + c )Q D 22 - a>

12- es Y ;14. [x -&, 2 + <y/r 1 2]2
[(x + a>2 _ (y/ 2

[(x + &) + C y/1 )1 2

+ Cc + > D . . . . .. -& - Cy"2 ) h
12 6 y 2 + C y

t.. -.,.+ 2 ,,,...i . ,: ,> >2]2+ [(x + ,a > 2 cy r 2 . _ , a a

I QC( +c0 ) B CIx-a 2 r

D <xo  _ &> , - y/r > ] "2 _ !. Cc +

I az Y-- II2 - )21 1- 1

(X ~ ~ ~ xa +C~ 2)~ a>I yr1 2c0

<yL[ x + &>)2 + <Y/r.'J >, 2 2 c1 ,r2 1 5

+ D ( Y r > ] 1a.E + 0 )>

A-2

-- DI--C 1



I
Note that each term is ldentically zero If

2 2

I ° 1 12 00 1

* and

11 00 00 CC2-q COc/r 2 -o0.7

RecalUing the definittior of q, and q2,

c c &r qc c c -
is 66 1 1 12 00 1

C C 2 - C r -2 c C + C

21 r e _ I 2 1 C
r 2 *c C

1 12 00 1

* and

11 00 2 12

2 2 C a C+

a 2
r2 12 0 2

Thms, each term in Eq (A ) is zero, and x-drect-lon equi-

libriumt 1w satisfied.

I Now, carrying out. the differentAation for the y-

equddbrium equation (Eq (A.16)),

C * *( +c€ ) u -Uy'yy Gso y'x 12 06 X'KY

, 2<x - -)Y, I)'.:2

- QD- - -,3 2 (x a ) + Kyr >f:

I
A-tB6

U



I 2(x - O)(y/r >/. 1
[CM - *)2 + (y/r 1>]

q2 2(x - a)y/r /r 2

2c2 2 +t/
222

U2(x - a)(y/r >/r 2

[(cx -*2 + Cy/r 2 2

- QD q [ 20c a)y/r)

I (x ->y~

+ [C2x- a>C f,

I2(x - &)(yfr2  1
+ C [C - a>2 + (ylr ) 3

*~ +cc +c > Q D (-2

12 Go y a yl 232

I2(x + S)Cyfrl )/ I 2cx - a)(yfr, 2 W0

3 [x +a)> + )yr 232 ECX &>a2 + (Y/,V2 >2 ?

IC +&a J yr 2

A-17



2(x - *xy/r 1 )/r' .2

- Q D~ 2<a) + * y/r Wr a221

-Cc +. c.)7r}

I~1 so IC I'.Y/1

I 2(x - )(y~ /r 
4.D LC~X a) 22%q'r

II

Equdlibzrium in the y-direction la mat imfiod If

I~ _,q Cc oq' 2  (0k * a ). - CA.41)

I and

c q~ 2 - <c +c >,v 2- 0 CA.42)

A-1S



i
since each term in the equilibrium equation (Eq (A.40) would

then be zero. Recalling the definitions of q and q,

c q, - C eq 2 - <CI~ + c e: "2 "

C C re2 >q, - Ccz + Cee>r22 2

C c qC -Cc aa > 1 -C+C>2
221 0 1 + 1 2 60 122 6611- 12 66

2

C - C r 2 (c r2 -4C > - <c + C >2

22 6 1 1 2 0 12 20

C1  C* 1+ 6

12 2 2i 4~cc +[ [czc +2c ) - cc ]Ir Ic

(A.48)

* and

2
0% - %qr - 1* %6O>2 2 2

< c r 2 > - (2 6+ c Cc

22 622 12 66 212 06

C€= - cC a  . 2 ct XC r:-C >- c C>2

12 s 26 2 o

- C. -C r _Cc 2C > - 4 )C C 2 +

Is e

c2 1A.441

A419



I

Thus, y-direction equilibrium is satisfied if

c c**4 41c <c +2c ) - c c -2 " 0 (A.=6)11 00 i la 12 00 11 22 , 22 00

I which, again, is the characteristic equation.

I
4. Combined Shear and Normal Displacement Disoontinuities

Since the material in assumned to be linearly elastic,

the displacements resulting from one set of boundary

conditions may be added to those resulting from another set

to provide the solution to a problem involving both sets of

boundary conditions. Therefore, the displacements for

combined ohear and normal displacement discontinuities are

- y'r [V- ._I;2

I 2.

QD -a),:- -" y'.''11 ,...,~aca or 2)-,.,,,,1-
< x + a- -- +[ - a 2

In - x 4 r 2 >yr9 < A.45>

U D In a)2 + <y/£l> e

! t t x 2 + >

I2

A-20



I

_ [rytc LLx- J )

(arctanU~5 Y/ arV 2,x__

5. Coordinate Transformatton to Obtain the General Solution

If the crack is not. aligned with the x-'awd, the

displaoements may be det-ermined by coordinate

I transformation. For a crack aligned with the 2i, 7 mystem,

transformation Into the x, y (material) system Involves the

following relationships:

I a: R cos win pA.47>

Sy - 9 wn (A.48)

Y x

u mu 3 coup - u wrn (A .49)

where Is the rotat-ion angle measred count, rclockwiwe from

the x-axis to the R-axis.

Carrying out the transformation on the form of

the logarithm functions umed in the displacement equativun,

In [x + (y/ t)'11"' - In [A Rt le + St* + y t ' (A.1)

A. - o n ( A.52)

3R - (I - r 2) in 20 / r' (AM)

C. M <2 win 2 A* o 2 P>/r 2  CA.54)

A-21



leads t~o using

2 .C V2 1/2I AR + B. az- Ry]

Although at first it would appear that the form of the

3 arctangent function should be

(Y? ) - *J!-Qtan f( - Csn+c AMS>)

x iR coo V w in 0

this would Imply that the crack lies along the w-axs

instead of along the R-axis. To account for this, the form

- of the arctaagent function msed In

1r t~n r + 18 /A )

I Thum, the following arctangwnt expressions are appropriate:

[> +R !) Dip/At )

The limit~s as 7 approaches zero are readily seen to be the

somne as before when y approached zero. Making these

substitutions yields

A-22



U~~ !_ m Q[ cta1 A, )
2 1 1

21 1

+[CR) YA) D /)J
2 2 2

(DZ +/a 2>+ IB

azct~a2 22 2)1
A~~~~ (U+&2 R +a)- C /

CR-s>a CR-)v + CV e 1

+ I I eI Q D11In I1J

An (U- a 2  (- &>, + 0 m-v*C 2 pLe

A [ : a 4~ +3 > +92CR + )>y + C~ 3 (ASS)

QaD&nda

2 12

(U+a)4 31 +U &>a + C1 /

a2 2

A-2/A



I

By making the following definitions,

S- - arct an (C AS
CR i-s Y/A

I ejr, - ,rcr, 1 (A59>

I the equations can be written in a more compact fornu

I U - + Q D q2(eir "O(, J -. (OI, -0

"" Q D In r(2 cr1 J I r a -> a > -(A.>

u - Q D (~) !- [r 1r> 0 . > '(.r ] ASS2)
I i 0 1 [1 ,1 .1 2]]

Q Dx  In( -in <AS>

Since the displacenmnt. dimcont.inuitis of Interwt, are

DR and D9 , the above expressios are transforted using

Dx  D coo t - D. win O (A.64)

D D. win # + D coop (A)

I
A-;t4

I



The reamit In

-QDrc. [ !- (ecrl - e (r?,) ( 1 ~

Ul U4iCa (44- -ar2)3d
+ D, [ (~r 1  - [r~ap)]c

U ~ ~ ~ rfi -: (4r -~ra)~

+QD n wi-AS

[,n rlrl In coo)]i ~ (A

I
I~ Ir



I
These equations are also valid if the origin of the R,

syetem is located at Cc ,c ) with r pect to the x, y

system. In that case, the 9, V coordinates are defined by

I <x - c ) co + (y- c ) n 0 A.68)x Y

" -(x - c ) sin JR + (y - c)oo (A.S9)

I S. Stressew for the General Solution

The stresses are determined from the stream-strain

relationships:

I
OF " c i 0 U , (A.14)

I r0 0 c + 4.U
xy 06 ux,y y, x

I ~and the coordinate transformation relat ionships:

-(cos - oin A.70>

Ir ,M cXsXos 1 uX,1 cX 11 wi ux,9

I + s in jOu +*C Cos 19u C.

I * A-26I



Il oyy = c 1 2 coe X' - 12wit9uX5

I22 yRi +22 (A.79

T KY = c..w in t9u ' + c..Go os .

+ c co.19u R- c sin 0u CA.74>I66 y, Go 6-

Wit~h the definitions of u and u above, we deterndrhe theIx y
following partia derivatives:

4 n nrrrcr .2 4 In r >) - -- In (zcr.,)

These ar-e readily obtained an

e Ic'- - t/~A (A.75>
CR 19;/ >2 2 y/

2 i (E-+a +-139/A. i 2(Vc/ri A .

C* a71y. A.
0 0 4( > = % % A.77)o
CX a + t VIyA. + (Yfr A 2)

I A-27



I
CR 4 a/y 7A8.

> -+ -iA. % % C.A.)

A.CR -&m> +. 1B9

II
- BRa) + CS

in j(r, (1 2i CA.78)
CR - A > -a) 2 + 3R - ) 4-

,A.CR + + -I
in r cr)J6 CASO)>

2 i A.<R< +9 a+.CR+&V+

i AiC. i .C a> I ( + c V C

In ' r> , 1.A~t

-- -( -- a A.)

I .n(ryc) - C + SO +A
-3C 4.) C*9 >- % CA.82)

2 i A. CRa 9  >I .CR + 4 )4Cp'

I (, a, a,

But, from Theorem 2 In Appendix ,

CR * a* + 1. /A. >2+C/ *

I- A.CR9 ± a)> + 3 lCR ± SL)y + 4 CV' (.14)

1So the derivatives of 0 1and e0 can be written

2 -9 - - a /ri

A R 2 + 10 C )Z + 4> +C

I~ CR-A)/S>

A.CR - . CR- &>V + a?

A-2



- 3- + 2 A.86>
8'2 ACR9+ a>) + B.CR + aw+ C

1. I.

Thus, we can define the following toermw:

-± Cr > - 9C>

A.CR a> 2) + 9.CR - a)5' +

A. CR + a)2' + B.CR + a)y +

*-2 r 1 (

A. -iCR. - a>+* CR)i~ Cv

(I.- + )/r.

-t <A.98>UAC! + a>;' + 9lCR +. an5 + *Y

R i-nrr.ir)Si.r,/r 2 R

A. CR - a) 2+D. CR - a.)+C.y7

AC-=



I

2B a) + c iv

A.CR ~ ~ .C +) +B a'C*~C

'a. a. A.OO)

A (R + a> + y +.R* C V2

Now, with Eq. (A.66) and (A.67) we have

U [F -] 1 RR in le

+,4 Q D, [R.- Rt*a]oo + D.[,- R ain CAS)

I Q..-R -- R--R Iwi
i 7 ! _ Ft r

D qr Q D4- tin 19
NO - -]" y 4 *- R 1 i r p~

+ Q D,;[~!R- R }o .2 -M Q D R 1- ~ R2 ] Win C'"

- Q D4R R40. cow- DR Rwin

-i co ,.o - Q D R, winA

(A.94)

I
I A-S0

I



Defining

I ' ii 12 2 212

-!.R--tSM It!. _!In
ii 2 12 2 r 2 21 r 22

911 12 r 1 2 2

Ithe partial derivatives beome

X#X x 1 29 1 3

QDRR-f )u2>in~ '9A.05)

Y.R~~ ~~ 3 1312 R 1 2 r

D.Sco 19 -2 Q 41ln CW

u D C. 1 R >co j - Q DCR -fIt >wii j998

4 R 4 4

yR )'' R 1 32 ~ A31 3



a7 -c cmO u,, -cl sin 1u,, +C csin 19u ,+ c co uxx 11 .R 1 , 12y, 12 ?

r- 0 DS 1 00eZ p - 8 a win A ce jp

-S c 12win 2 9- S c 12 in 9coos1

12 
412 2

+CR1- R )2(c + c 12/r r 2win 19coow]PA.

K 1 2 21 1.2

sQDsSc a2win o8 4 c a2 n wi Po

+ S c win 0 co j9 S+ ac 2
3122 4122CM '

-R*I- R 0 co ace9 ~- c 2 2win 2 9 r ira>

2 2

S )in1cc/rr wi~oP pAS

<41- 42 11 12 12 >i a 0

D' m c u -c1wi +2win 1 coo wiP u a cF 2

-cR w1inR2 XSCOO2J win 219/ 1o > C.11

22A-422



i

As can be seen from the definitions of the R..'s in Eq

CAB?)> through CA.9O), the stresses tend to zero am the

distance from the origin tends to inflnity. Thus, the final

boundary condition of zero stress at infinity is satisfied.

i
I
i
I
I
I
i
i
i
I
i
I
i
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Appendix B: Proofs

Theorem 1. Given the material constants c1, c ,, c , Co,

rip r"2 and

2 -c 
2 -cc 11 1 06 11 r2 6

C 4 
C 12+

12 06 12 00

then qq%

Proof:

Using the definitions of q and q leads to

12 go

Define

22

6 2 -Ic C2  - c <c *C*2 4 c c 2 . CD2
11 22 12 12 11 2 2 06

Then, from the characteristic equation:

c11Ic00 r c12 Cc12 + c06 11 c22 Ir 2Ca2C 600C.

we have

c c - c Cc 2c) 6
2 11 22 12 12 0 ___(4

1 2c c 2c 1

IThn omhecaat it i utoF

ICl4il,4 .C1C1+ 1ie--C11]y . 0 8
B-i~ ii

Iehv



I
;C C - C(c + 2c) 6

1122 12 2 (3.5)
2 2C c 2c c 0S211 *041 11 **O

So,

c c - Cc + 2C )- 2c 6
cr _ C 11 22 12 12 00 0 B.6)

2c 00 2c06

c 111 -2- Co m+ - Biand
cc -c (c -2c )-c 2c> 6

2 11 22 2 122 00 0e (3)

cr- -cc-cC c>-22 6

112 c 12c 2 +2,,>

n Thwr-oforo,

-(c 2 - .. )(c c - c..) -
so00 - 2 112 + 6 so

[c-2--- c°(- 2° 2c°) 2+~.9[ ]
I

I [
I

I



- c (+ 2c )2 -4cc c C+4C22

c [ 11 22 C12 12 00 11 2200 12 Ge

+ sB c a + 4C4c c cc + c >e2
12 00 00 11 22 12 12 00

+ 4 c c c 2I~1 2402 1
r[ 1

-- c2 C +Sc c* + 4c4
I + 1200 1200 00

2 + c 2

12 12 66 00

I 12 66

Thum,

c c 2p - co Xc V 2- q'o > Cc + ce) CB.S>

ad(r - c )(c =) (c +c) (3.8
11 0e 112 _12 o

and

lq C c1 + c c6 ) > 2 c 0 0)2

Theorfore, qq 2 - 1.,

I B-s



I

Theorem 2. Given the material constants r 1 , r' the

measured angle 1, and the half-crack length a, and defining

the parameters

2 2 2 2A m (r cow 0 + un $> / .1.

B a <1 - r. > win 20 / r

2 2 2 2

then

R ± a + 1BY/A ]2 + [Y/Cr A.)?

- A.CR ± a>2 + D.CR a)5 + C V ]/A.

I where R, V are the local coordinates.

I
Proof:

I Expanding the binomial,

3 CR + a + IB /A ] (Y/C2A.
2 1.2 i 2 ~A)

- CR 2 +)4 CO./A. )R t >y + -1"(3./A > 2 Y'/<,A.>2

I Using the definition of B.:
I,

leads to

B-4



I
C.IB, 2 , , ./ ,. 2 _ [<I 2- , 2 .. 9 C08 q= - + r 23/?, -,2

4~~~I i .

12 2 2 2(( 22

[win2 i ces -r2 win2 co oo

I 1

+ ;4 grin 2 A + 2 + r,
4 A a

+ r2 Pire P 2 +coo 2 >I 2 A 2

I ]+ winnco2 2 - + 2 o + r 2 coo 2
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C1y2 win 2 19 + Co82 p>y.2CO&2 q + arlr2 IS> -

Thus,

4 i , i

Cr win2 tg + Co62 p>(y2CON2 j9 + arkn 2) 9 '>." (B
12 A 2

v.A.

I Using the definition of A. leads to

H 19* W4)A1 c- wrin p4 'q>4;',. 1).: [ ••

r2 wn2 2e+CoH - (r~i m4 co (A8.12)

rA.

while uming the definition of C. leads to

12je + 2/r. WA - C./A.. (B.S)
(-4

Thus,

- R- + CB. /A.)R +a) + (C./A.). (8.14)

Therofore, CR a + ± 18 Y/A ]2 + 4 'r.A.>e

EA C.R * &>a + B.(R &± +) C7 2 9AL.

I
I
I
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I Appendix C Pro am TWODD

INOTE: The information in this appendix is taken directly from
Crouch and Starfield (Reference 7) with only slight modification.

11. Input (Data) Deck

Program TWODD requires the following six sets of cards:

Set 1: Free FORMAT; one card must be given (may be blank).
Columns 1-80 of this card contain any desired information to
identify the problem being solved.

Set 2: FORMAT (314); one card must be given to specify the following
control parameters.
NUMBS = number of straight line boundary segments (each

containing at least one boundary element) used to
define boundary contours.

NUMIOS = number of other line segments (not on a boundary)
along which displacements, stresses, and stress
intensity factors are to be computed.

1 no symmetry conditions imposed.

KSYM 2 x=XSYM (Card 3) is a line of symmetry.
y-YSYM (Card 3) is a line of symetry.
x=XSYM and y=YSYM (Card 3) are lines of symetry.

Set 3: FCRMAT (F6.2,E11.4,2F12.4); one card must be given to define the
elastic constants and specify the locations of lines of sylety
(if any).

PR = Poisson's ratio (P).
E = Young's modulus (E).

XSYM = location of line of symmetry parallel to y-axis (XbM
is ignored if KSYM - 1 or 3 on Card 2).

YSYM = location of line of sy fetry parallel to x-axis (Y BM
is ignored if KSYM a 2 or 4 on Card 2).

Set 4: FORMAT (3E11.4); one card must be given to define the initial
stresses (if any) in the region of interest.

PXX - C at infinity.

PYY a at infinity.

PXY = F" at infinity.

I
I

I



I Set 5: FatR1AT (14,4F12.4,i4,2El1.4); Nu.RBs cards mst be given to
define the locations and boundary conditions of the boundary
elemnts.

NU = number of equally spaced boundary elements along a
straight line segment, all elements having the saw
boundary conditions.

XBG x-coordinate of beginning of line segment.
YEW = y-coordinate of beginning of line segmnt.
XED = x-coordinate of end of line segmnt.
YiEID a y-coordinate of end of line segmnt.

1i a and a prescr ibed .
2C u* anu un prescribed.1CE 3 us a o prescribed.
4 ,' and u rsrie

BWS = resultant shear stress (o,,) or displacement (u,).IBVN - resultant normal stress (a.) or displacement (u).

Set 6: FCWAT (412.4,2M4; NUIVS cards must be given to define
locations of points inside the region of interest where
displacements, stresses, and stress Intensity factors are to be
computed.

XERG - x-coordinate of first point on line.
YBEG = y-coordipate of first point on line.
XDID - x-coordinate of last point on line.
YDID - y-coordinate of last point on line.

NULPB - number of equally spaced points between the specified
first and last points.

KTYPE , opt displacements and stresses only.I 1 compute stress intensity factors as well.
Note: If KTYPE1l, (XBG,YW) mint be the location of
a crack tip, and the line defined by (XEND,YID) imt
extend In the direction of the crack In order for the
computed stress Intensity factors to have any meaning.

I C-2



I 2. PrograM TWODD LiSting

1 ~9COMP/Sl/PI ,PR,PR1,PR2, CXI,CN
COMMO/S2/SXXS,SXXN, M S,SYYN,SXYS,SXYN,UXS,UXN,UYS,UYNI ~~CXOttI/S3/C(16O0,1600),B(1600) ,D(1600)

DIMENSION XM(800),YM(800),A(800) ,aOSET(80O) ,SIkIEKr(800),KOD(800)
DIMENSION4 TITLE( 20)

OPEN (LUIT5, FILE= TIlOD. DAT ', STATUS= 'LD'
OPEN4 (Lt4IT-6,FILE-'TWOMC.LISI,STAIJS='NEW')
READ (5,1) (TrfLE(I),I=1,20)
WRITE (6,2) (TITLE(I),I=1,20)
READ (5,3) NUMBS,NLDIoS,KsyN
READ (5,4) PR,E,XSYM,YSYM
READ (5,5) PXX,PYY,PXY
WRITE (6,6) NI'US,Numos
00 TO (80,85,90,95),KSYM

80 WRITE (6,7)

85 WRITE (6,8) XSYM

95WRITE: (6, 10) SMyM

100COTINLE
WRITE (6,11) PR,E
WRITE (6,12) PXX,PYY,PXY

PI-4.ATAN(1.)
at4-1./(4.*PI'(1.-R))
C4S=E/(1. 4fR)
PR1-1.-2. 'PRI C 2R2-2.*(l.-PR)

C DEFINE LCATIONS, SIZES, ORIETATION4S AND BiRDARY CONDITIONS OF
C BOUDARY ELEMENTS.

DO 110 Nal,tJMBS
READ (5,14) NIJI, Xin, YW, XDID, YEND, KODE, BVS, BYN
XD- (XEND-XBBG) flL

SWaSWro(D*'XD+YD*YD)

I C-3



IXM(M)=XBG0.5(2.*NE-1.)X
YM(M)=YBEG4O.5*(2.*NE-1. )*YD
A(M)=0.5*SVI SINET(M)-YD/SW
COSBET (M) -X(D/SV
KOD (M)=KODE

I 110 B(M1)-BVN

WRITE (6,13)
DO 115 M-1,NMBEI SIZE=2. 'A(M)
ANGLE.-18O. *ATAN2(SINBET(M) ,COSBI'(M) )/PI
WRITE (6,15) M,KOD(K),XM(M),Yh(M),SIZE,MU.LE,B(2*MH1),B(2*H)I ~ ~~~115 CONTINUETOA R PINTAS'REE.

c ADJUST STRESS BUDR AUST CON O NTA TMSS

I DO 150 N-1,N*IBE
NN=2*N
NS4IN-1I COSB-CSBETr(N)
SINB=SIWMi.(N)
SIGS- (PYY-PXO() *SINB*ODSB4PXY* (aiSB'COSB-SINB*SIHS)
SIGNuPXX(*SIND*SINB-2.*PXY*SINBD'DSB+PYY'OOB'ODSB
GO To (120,150,130,140),KOD(N)

120 B(NS)-D(NS)-BIGB
B(NN)-D(NN)-SIG4fI G0070 150

130 B(NN)-B(NN)-SIG4
GO TO 150

140 B(NS)-B(NS)-SIGS

c CsOT INU ECEFCE T-AN SET UP SYSTEM Or ALGERIC

DO 300 I-1,NUMBE
INin2*1
ISSIN-1

YIZYH(I)
COSBIsCSBT( I)
SINlBISINr( I)I KODE-KOD( I)
DO 300 J-1,NUMiN
JN-2*JI JSMJN-1

C-



I CALL INITL

YJ-YM(J)

SINB-J=SINBET(J)
AJ-A(J)
CALL QOEFl(XI,YI,XJ,YJ,AJ,CSB,SINB3,+l)
GD WO (240,210,220,230),KSYM

C
210 XJ-2. 'XSYM-X1(J)I CALL COF(XI,YI,XJ,YJ,AJ,t)GB,-SINDJ,-1)

OD TO 240

I220 YJ-2.*YSYM-YM(J)
CALL COFF(XI,YI,XJ,YJ,AJ,-)SJ,SINBJ,-1)
G0 TO 240

230 XJ=2.*XSYM-XM(J)
CALL ~'(XI,YI,XJ,YJ,AJ,COSWB,-SINBJ,-l)
XJ=XN(3)I YJ-2. *YS~YY(J)
CALL CDEF(XI,YI ,X3,YJ,AJ,-QJSDJ,S14&,-1)
XJ-2. *XSYH..XM(J)

CALL V(XI ,YI,XJ,YJ,AJ,-(D693,-SINDJ,+l)

240 COINUEI G0 TO (250,260,270,280),KCE

250 C(SJ)(YSSM)SNIOSISY*CSIOSISNISNI
C( IS,JN)-=(SYYN-SXXN) 'SI4BI 'aDBI+SXYN' (ODSBI*CaSBI-SINBI'SINBI)IC( IN, JS )-SXS 'BSINBI-2 .*SXYS*SINBI 'SBI+SYYSOBIQCSBI
C(N1,3W) .SXX(N*SINBI 'SINBI-2 .*SXYN*SINDI 'a)SBI +SY!N'O)SBI'CO)SB
O To 300

260 C(IB,JS)=S'SBIUYSSNBI
C( IS,JN)UX6'CX1991UY14'SINBI
C( IN,JB)-UMBSINBI+UYS'ODSBI
C(IN1,JN)n M *.GISINBI +UY1'CXSBI
O TO 300

CI 270 C( 18,38)-tU8'DBBI+UYS*5INBI
C( 18,3 JN*(OSI+lJY*SINBI
C( IN,JS )SX0CS*SINBI*SINBI-2 .*XSSNICBIYYCDIOSI
C(N1,314) -SXXN*SINDI *SJt49I-2. 'SXYN'SINBI 'DSBI +SYYN'(DBBI'a)SBI
GO T0 300

c
280 C( IS,38 SY-XS)SNICSISXS(UB*DBISNISNII C( IS,JH)-(SYH-SXN)S14H1'aJSBI.SXYN*((X)SBI'CDSBI-SINDI*S1NBI)

C(IN1,38) a-iX*SINI4JYSO(X)SDI
C(11,314)- *SNIJYft*(D9B1

I c-s

I-



300 CONTINUEAI

CALL SOLVE(N)

I~C COMPUTE BOUNDARY DI SPLACEKW!IS AND STRESSES.

WRITE (6,16)
Do 600 Ia1,NUME
IN=2*I
IS-IN-iI XI-XM(I)
YI-YM(I)
CSBI=COSETr(I)
SINBI=SINW1( I)

UXNEG=O.
UYNwwG.
sIG,0caPXX
SIGYY-PYY
sIGXY-Pxy

D0 570 J-1,NUME
JN-2*J
JS-JN-1
CALL INITL
XLJzX(J)

YJ=YN(J)
AJ-A(JJ
CDSBDJS3T(J)
SINBJuSINIKT(J)
CALL COV(XI,YI,XJ,YJ,J,SJ,SINJ,+l)

51 J-2.*XSYM-XM(J)
CALL CO'F(XI,YI,XJ,YJ,AJ,DSB3,-SINBJ,-l)
00 TO 540

C
530 XJ-2. 'XSYM-YM( J)

CALL cXOin(XI,YI,XJ,YJ,AJ,--XOSE,-SINW,-l)

50XJ=2.XM(J (

CALL COY(XI ,YI ,XJ,YJ,AJ,00SD,-SIND3,-1)

XJ-2. *XSYh-XII(J)
CALL CO7F(XI ,YI,X3,YJ,AJ,-SD3,-SINDJ,+1)

C-6



Ic
540 CO~NTINUE

UrAOG-UXNG~t4XS*D (JS ) .LCG4'D(JN)
UYNEGWUYNBG4JYS*D(JS ) 44YN*D(JN)
SIGXX=SI0c+SXXS*D(JS )+SXXNI'D(3N)
SIGYY-SIGYY+SYYS'D(JS )+SYYN*D(3N)
SIGXY-SIGXY+SXYSD(JS )+SXYN'D(JN)

570 CONTIUEz

UZIIS- XNMGik QBBI +UYNW*SINB
Uw6--Uxl3'SiNBI +uftN3GCO65I
USlS-USN3-D (IS)

SI(34-SIGXX'IN *SNI -2. *SIG3XY*SII I ISIY*OBI*OB

WI79 (6,17) I,D(IS),SNUG,QS,D(IN),tU,W0s,UXNG,UNEG,
UXPOSUYSII3,SIG4

600 CONTINUE

C (XOfM.M DISPLACEIMET AND STRESES AT E~CFIED POINTS IN BODY.

IF (NUNOS.LK.O) GO30 900

DO 900 td-1,NUJIS
READ (5,19) G, YMG, D,YIM,NUPB,KTYPE
IF (KTYPE.BD.0) WRITE (6,22)
IF (KTYPE.EQ.1) WRITE (6,18)
NUP-laieB+l

vMY= (YRED-YwG)1/31W
IF (N'iEPB.cfl.0) NUMP-NUHP41

C IF (DEUX"2+Cin.Y*2.ZQ.0.) NUP1

AN~lS-ATA42 ( YDID-YMG, XED-XinG)

DO 890 14I-1,NUMPf
XPuXEG4(NI-1 ) 'DU

YP=YBG+(NI-1 ) 'DLY

'Jxa0.
'Jymo.
sioacxpxxIIYMY

* 0-7



DO0 880 -,UB
JN-2*J
JS-JN-1
CALL INI'IL
XJ-XN(J)
YJ-YH( 3)I AJ-A(J)

IF (SR(X-J*2(PY)2)L..A)O 00O 890IIF (KTYPZ.90. 1) R-SURT(( -aG*X-'l+Y-EG)(PY~
OOSBJ-aJ8EEr(J)
SINDJ.SINBET(J)
CALL COTM(,YP,XJ,YJ,3,SBJ,SINJ, +1)
00 7O (840,810,820,830),KSYM

CI 810 XJ-2. 'XSYM-Xt( 3)
CALL 03U7(XP,YP,XJ,YJ,AJ,C)SBJ,-SINDJ,-l)
OD0 TO 840

820 YJ-2.*YSYh-YM(J)
CALL COEF(XP,P,XJ,YJ,AJ,-CSDJ,SINBJ,-l)I C OD TO 840

830 XJ-2.XSYH-XM(J)
CALL ~'(P,YP,XJ,YJ,AJ,CXSD,-SIND3,-l)
LJuXO~i)
YJ-2. YSYM-Yh(3)
MAL 00Y(XP,P,XJ,YJ,AJ,-OWSD,SINBJ,-l)
XJ-2. 'XSYM-XM(J)U CMLL OOV(XP,YJ,Y3,L3, -aS,-SNBJ,+l)

3 C840 a.UITIIJE

UXUX+UXSD(JS )4.UXG4D(JN)
UY-LJY4UYS*D(JS )44JYN*D(,fl)
SIGa-SIGMXXCD(JS )+SXX(N'D(JN)
SIGYY-BIGYY+SYYD( JS )+SYYN*D( JN)
SIGXYBSIGC3Y+SXYSD(JS )+SXYN'D(3N)

C880 OOTIM

IF (KTYPE.DO.I) 00 TO 885

ANmI-ATMt2 (-2. *SICY, SIM-SIGYY) -2. *ANUZ

II2(IDXSCY)2+A*O(W



SIF=SQRT( 2.*PI*R)*SiG2
SIF2-SORT( 2. 'PI'R)*S1012
WRITE (6,20) NPOINT,XP,YP,UX,UY,SI~,SIGYY,SIOXY,SIF1,SIr2

890 cw4TINMZ

900 CONINUJE

C FORMT STATEENS.

1 FRMT M2AO)
2 FORMlT (1H1,/,25X,20A4,/)I3 FaMT (314)
4 FaMT (76.2,E11.4,2712.4)
5 FORMT (3811.4)
6 FORMT (/,109H4 NUMBER~ OF S 'RAIQT-LINE SDCIWI' (f O ( IING k

23H4 NUBRO ?RIf-LINE S WSEM UST l§F T=LCT
38 (I.E., NOT ON4 A BOUNIDARY) WHERE RZSI.LTS ARE TO = FOLDI =,13)

7 Fa T (/32HNO SMMERY 0NDI I W MOSED.)
8FRMT (/,1814 THE LINE X - XS -,F12.4,231 I A LINM Ci SYMMETRY.)
9FORMT (/,18H THE LINE Y - YS =,712.4,23H IS A LIMU OF S!N.41RY.)I ~1 FORMT (4,19H4 THE LINES X a XX -,F12.4,13H4 AM - YS =,F12.4,
1,~23H ARE LINES OF SYMMETRY.)

11 FORMAT (1,184 POISSON'S RATIO u,F6.2,//,SH YO(JJIS MlCUAAM -,311.I 14)
12 FORMAT (/,314 XX-fCOwwrNTO VIED S7=8S =,311.4,//,314 YY-aE0
1HNT' OF FIELD STRESS -,11.4,//,31H4 XY-CaMPVNT OlPFI 8130 'TSS
2,311. 4)

13 FORAT (111, /, 27H DCJJDDARY ELWIT DATA.,//,96H EJEIT K
10O X (COMM) Y (CENTE) LENM TH M U S OR SIGM-S
2 UKI OR SIGAA-N,/)I 14 FORMAT (14,4F12.4,I4,2Z11.4)

15 FCWAT (219,3712.4,F12.2,2E15.4)
16 FORMT (1141,/,66 DIAWS AND STRESSE AT MDPOINS Or B

1OLIIDhRY R~MrrS.,//,40H KMW? DO Us(-) us+
2 60H4 CM Ul1(-) LtI(4 UX(-) UlT(-) UX (+)
3 30H4 UY(+) SICG4A-S SIQB-m,/)

17 FORMAT (Il0,10F10.6,2710.l)I18 FORMAT (114,/,634 DISPLCEENS AND ST SAT SIFIED POINT1
is IN TH BODY.,//,1174 POINT' X C-ORD Y CD>-ORD U
2X UY SimX SIGYX SIGECY KII3 KIId/)

19 FORMT (412.4,2W4
20 FORMT (19,2712.4,2712.6,5712.1)
22 FORMT (114,/,634 DI.. SPLAEME AND STE8E AT SPECIFIED POINT

1S IN THE BODY.,//,93H POINT, X (D-CRD Y CD-ORD tUx
2 UY SIUXI SIOTY SIGCY,/)

C-



I CLOSE (6)
EDD
SUflRWrINE INITL

COMMCH/S2/SXXS, SXX4, SYYS, SYYN, SXYS, SXYN, UXS, UXNUYS,UYN
C,I sxxs-o.

SXXN=O.
syYs=0.3 SYYN=O.
SXYS-0.
SXYN=O.

c

'Jxs-0.

I C UYN-0.

suKWIM OO( X, Y, CX, C,A,QCM, SIIIB,?EYM)

c139114/S1/P1 ,PR,PR1,PR2,CR,a*IS
aOHAt4/S2/Y3CS,82GSYYS, SYYN, SXYS, SXYN,UXS, UXG,UYSUYN

CD62B-CBDS-SINB'SINB3 SIN2in2. 'SINB'COB

SINB2nSINB*S143I C XB- (X-MCOBB+0S1(Y-CY) 'SINB

YBO-(X-CC) '9MB-( Y-CY) 'aDss

R1S-(XD-A) '(XB-A)+YB'YD
R2S ( XB+A)' ( X34A) +YB'YB
FL1=0 . 5ALOG(R1B)
FL2-0. 5'AWC3G(R2S)I FB2CC' (FL1-FL2)
IF (YB.N3.0.) 00 TO 10
FB3-0.
IF (ABS(X).LT.A) FB3uCON'PI

10 F3--M*(TAN(X54A)/YD)-ATAN( (XD-A)/YB))30 FB4F C YB/R1S-YD/R2S)

FD6-OCI( ((XD-A)**2-YD'YB)/R1B"*2-( (XD+A)**2-YB'YB)/R2S"*2)
117-2. CM*YB'( (XB-A) /R1B**2- (XD+A) /R2s"*2)

UXD6=-PR1SINB'FB24W2'4DBB'FB34YB' CSINB'FB4-aJSB'F35)
UXDN=M--IC03F3r2-32SINBF33-YBD' 09B44B41K3'VB5)3 UYDSW1'W*CS'F2I'R SIND'B3M-YD'(COSB'FB4+SIN'B5M)

I a-to



SX0D6~S ' CS2.* S2*B+INBFB B(OS2B'FB6-SIN2B*FB7))

I ~ ~~~SYYDN.aJNS* XEI4'( -FB5-YD ( SIN2B*Fs64.aDs2B*F7))

SXYD6CM' (SIN2B*FD34-CU2B*F5+YB* ( SIN2B*FB36+4D2B*FD7))
SXYD-CIS' (-YB' ((X2B'FD6-SIt42B'V7))

C
UXS=UXSHSYM'UXD
U)G4-=UW(D
UYS-UYS+MSYh'UYDS
UYiNMUYN

SXXS-MBJOS+E'SXDS
5X)l4=SSXXI+SX)MIN
SYYS-SYYS+MEYM'SYYDS

SXYM-SXYN+SXY24

ND

CMU4/S3/A(16O,16OO) ,B(1600) ,X(1600)

D20 Ju1,NB
LJ+1IDO 20 J-,
XM--A( JJ,3) /A(J3,J)
D0 10 I=J,N

10 A(JJI)-A(JJ,I)-A(J,I)'XM

I20 (J-(J-(WX
IDO 40 JlN

L-33+1

DO 30 I-L,N
30 S1JI-5J94A(JJ,I)*X(l)U 40 X(JJ)O(B(3JJ-SUt'O/A(JJ,JJ)

IBOURN
EN
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I Appendix D: Pogrm TWODDO

NOTE: Most of the information In this appendix is taken directly
from Crouch adStarield (Reference 7) with only slight modification.

1. Input (Data) Deck

Program TWODDOC requires the following six sets of cards:

Set 1: Free FtSMT; one card must be given (my be blank).
Colums 1-80 of this card contain any desired Informtion to
identify the problem being solved.

I Set 2: FVRMT (314); one card must be given to specify the following
control parameters.

NUMB - nuber of straight line boundary segments (each
containing at least one boundary element) used to
define boundary contours.

NUHO - number of other line segments (not on a boundary)
along which displacements, stresses, and stress
Intensity factors are to be couted.I no smetry conditions Imoed.

KSYM - 2 x-XSYM (Card 3) is a line of symietry.

3 1YSYM (Card 3) is a line of symetry.
4 x-XSYh and yuYSDI (Card 3) are lines of symmntry.

Set 3: FRMT (3311.4,F6.2,212.4); one card mst be given to define
the elastic contants and specify the locations of lines of
symetry (if any).

Ell - Young's modulus in x-direction (3E,).

322 - Young's modulun in y-direction (3).
y

012 - Shear modulus for xy-direction (0y).

V12 a Poisson's ratio for xy-direction (u'y).
XSYM - location of line of setry parallel to y-exis (XSm

is ignored if KSMh - 1 or 3 on Card 2).
YSYM - location of line of symetry parallel to x-axis (YSH

is ignored if KSYM - 2 or 4 on Card 2).

I Set 4: FOMAT (3311.4); one card mnt be given to define the initial
stresses (if any) In the region of interest.

PXX U xx at Infinity.

PYY M C at infinity.

PXY a T at infinity.

I
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I

I Set 5: FCtMAT (14,4F12.4,14,2E11.4); NUMBS cards mnt be given to
define the locations and boundary conditions of the boundary
elements.

NL- number of equally spaced boundary elements along a
straight line segment, all elements having the sme
boundary cond itions.

=XG - x-coordinate of beginning of line segment.
Y - y-coordinate of beginning of line segment.
XIMD - x-coordinate of end of line segment.
YDID - y-coordinate of end of line segment.

i' 1a and on prescribed.
3 u and o prescribed.
4 and u" prescribed.

U 1n

BVS - resultant shear stress (0,) or displacement (u).

=VN -resultant normal stress (o) or displacement (u).

Set 6: FaRMT (4F12.4,214); NUMB cards nust be given to define
locations of points inside the region of interest vhere
displacements, stresses, and stress intensity factors are to be
computed.

- x-coordinate of first point on line.
YEW - y-coordinate of first point on line.
XEND - x-coordinate of last point on line.
YEW - y-coordinate of last point on line.

NUMPB - number of equally spaced points between the specified
first and last points.

KTY a 0 compute displacements and stresses only.

1, 1 compute stress intensity factors as well.

Note: If KTYP1IW, (XBB0,Y=3) must be the location of
a crack tip, and the line defined by (XmI,YmD) must
extend in the direction of the crack in order for the
computed stress intensity factors to have any meaning.

D
I
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2. PrograM TW0CDW Listing

PROGRAM ThCDW

lCtK4M/S2/SXXS,SXXG,SYYS,SYYl,SXY,SXYN,UXS,UXN,UYS,UYN
CVfMt/S3/C( 1600, 1600) ,B(1600),D(1600)

DIMEN~SION4 XM(800),YN(800),A(80),DSM(800),SINr(00),KD(80o)
DIMENSIONI TITLK( 20)

I ~ OPEN (LIdT-5,FILE=m TIUVAT', STATU8-OLD')
OPEN (LkIT-6,FI[Z-'TWKODDO.LIS ,STAuS-3@NM)
READ (5,1) (TIILE(I),I-1,20)I WRITE (6,2) (TITE(I),I-1,20)
READ (5,3) NUMJBS,1IJOS,KBYM
READ (5,4) E11,922,012,V12,XSYM,YSYK
READ (5,5) PXX,PYY,PXY
WRITE (6,6) ?&I4BS,W.L40S
00 70 (80,85,90,95),KSY

80 WRITE (6,7)I GD 70 100
85 WRITE (6,S) XSYH

GO0TO 100
90 WRITE (6,9) YSmK

95: WRITE (6,~10) SMYM
WRITE (,1 1,2,1,l
WRITE (,2 XYX

PI -4. *ATAN (1. )

COxul2-V232 (V2'2/142.G2) g1*322/311

C!143uE22*012

C22-1322/OON
C12-V12*C22
CON1-(CllG1G1-12 )/(C12+012)

cxW201'02/2 ./PI/ (0141G2-G1/00111)

C DEFINE LOCATIONS, SIZES, ORIENTATION4S AND BOUNDARY CONDITIONS OF
C DOIJIDAY UBQIlTS.

DO 110 N1l,NJIBS
READ (5,14) NtJM,XinO,Y=G,XD4D,YDID,KOW,VS,BVN
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YDOn( YEND-YBBG ),fLI
SB-BORT( XD'XD+YD*YD)

C
DO 110 NEi-1,HJI

XM(M)-XBG4.5(2.'NE-1.)XD
YT (M) uYUGO0. 5* (2. *ME-1. )'YD
AM -0 O.5*SV
SfIW(K).YD/SW
CxwDK'r(M)-X(D/SW

115.13-1
B( 11) .S

110 B(194)-BWI

I WITE (6,13)
DO 115 14-ll1J1E
SIZB2.'A(M)
AME-180. ATA42 (SINE rM)COSwT(m) )/PI

11 OOT4-1

I
BIOS- (PYY-PXX) 'SINB'a3D4BPXY' ((X3SB'(DS-SIMB'SINB)
SIcI4.PXX'SIND'SINB-2. *PXY'SINB*aDU34PYYDSB*C0S
OD 710 (120,150,130,140),KID(N)12I(g-BN)SG

10B(NS)-S(N)-SIOSN
00 TO 150

130 B(?1)B(M)-SIGN

14 B (N)3B(NS)-SIGS-5 LRI

15 OTINE

DD 300 Iwl,NMBin

IN2*
YI-YM(I)

BIND! SINI'(1)

D-



I KOID-K0D( I)

I DO 300 3-1,NWI=
JN-2'J

CALL INI'IL
XJUXH(J)
Y3-Th(J)
CDS&1-CxWrB(J)
SINDJ=SINWI'( J)
AJ=A(J)
CALL (XIW7(XI,YI,X3,YJ,AJ,(DS&J,BINBJ,+l)
GO TO (240,210,220,230),KSYM

210 XJ=2.*XBYM-XM(J)
CALL COv(XI,YI,XJ,YJ,AJ,OSJ,-SINWa,-l)I OD TO 240

220 YJ-2.'YSYM-YM(J),
CALL CaEF(XI ,YI,XJ,YJ,AJ,-CX3SBJ,SINJ,-1)IO ID 240

230 XJ-2.*XSYh-XM(J)
CALL aOEwF(Xn,YI,XJ,YJ,AJ,COSsJ,-SINBJ,-l)

CALL ofxiyxjyj-osZBlI XJ-2. 'XSYM-Dht(J)
CALL- OOF(XI ,YIXJYJA3,-'J83,-1143,+1)

I 240 CIT1MB
OD ID (250,260,270,280),KOIN

CI 250 C( 15,J8)-( MY!S-SXCS ) SINBI 'OUSB1+SXYS' (03OS*DI-SINDI*'81143)
C( 18,31)- ( SYY-SXX) SINBI'038314SXYN*'(ODSBI*C63I-SN3I'SJIkUI)
C( IN,3S )-S)OCSS11431S1143-2. 'SXYS*SINBI'aOSBISYYS'COBBI'CO3I
C(IN1,314) -SXX14SINDI'S11431-2 . SXY14'SINDI 'COBI+SY!14'O6BI'COII OD ID 300

260 C( 15,3 JS=*CSUI44YS*SI43II ~C( 18,314) -Ikx14'aSBI4UY1SINBI
C( 11,38 )-4_=CS114D1UYS'CX2831
C(11,314) -- (=JQ4SI1BI+UYNl4COSBII~O (DI 300

270 C(IS,JS)-tUSs3UYS'SINBI
C( 15,314) -UXZ4'W85UY14SINBII ~C(IN1,3 J) -SXXS'SINDI*SI4BI -2 . 'SYSINBI 'a3SBI+S'*SCO S3IOO
C(I11,314)0 44S1431 '8114-2. 'SXYNSINDI 'a)SBI+SYM14'BSI0SSI
O TO 300

280 C (18, JS) 0(SYYS-SOC) Sx14 CBI~+SXYS*(31*OI -SInM's*BNH)



C( IS,JN )-( SYYN-SXXN) 'SINBI'QDSBI4SXYN*(ODBICO6DI-SI4BI*SINBI)
C(IN1,35 )--UXS'SINBI+UYS*a)SBI
C( IN,JN )--UXk4SINBI44YN'CUBI

C

C

CALL SOLVE(N)
CUC COHPUT BONDARY DI SPLAEPONS A TESS

WRITE (6,16)
DO 600 I-1,NPJ=
IN-2*I
IS-IN-1
XI-XM(I)IIYMI
CDSBI-CSBT( I)

SINBI-SINBET( I)

UXNEGO0.
UYtmuG-.I sioxx=pxx
SIGYY-PYy
SIGxY=pxY

DO 570 J1NH

3JN-1*

CALL IHITL
XJ-XM(J)
YJ-YM(J)I AJ-A(J)
CnS=B39T( J)
SINBJ.BINBET(J)
CALL OOF(XI ,YI ,XJ,YJ,AJ,o3SDJ,SIND,+1)
GID -70 (540,510,520,530),KYM

C
510 XJ-2.XYH-XM(J)I CALL cxOW(XI,YI,XJ,YJ,&3,cxS&J,-SINWB,-1)

00 70 540
C

520 YJ-2 . YSYM-YH(J).

CALL OOW7(XI,YI,XJ,YJ,AJXOuJ,SINuJ,-1)

XJ-XM(J)

YJ-2. 'YSYM-YM( 3)
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I CALL COTP(XI,YI,XJ,YJ,A1,-=Sa,SINBJ,-1)
XJ-2. 'XBYM-X(J)
CALL CUT(XI ,YI ,XJ,YJ,AJ,-a)6BJ,-SINBJ,+1)

540 COTINULE

UXNED3=UXNE+JXSD(JS )+UXN*D( JN)
UYNE-UJYNEG+US'D(JS )+U YN*D(JN)
SIGaXSIMX+SXX(S*D(JS) +SXOcN*D(JN)
SIGYY-SIGYY+SMYS'D(JS )+SYYN*D(J4)I SIG3XY=SIGXY+SXYS*D(JS )+SXYN*D(JN)

C
570 CONTINUE

.USNE UXNLrICDSBI +1JYNEG'SINBI
LIMG--Xmu'sIHDI +UYNbO'cXSBI
USPOS-WNEQ-D( IS)I LMNPOS-UIMUG-D( IN)
UXPOS-USwcS'OSBi I.RIPK6*SINDI
UYPS-WSPQS*SINBI +IJEOSBII ~SIOB- C SIGYY-SIGXX) *SINBI 'COSBI +SIGXY* (CflSBI 'a)8BI-SINBISINBI)
SIG-SIGXX*SINBI 'SINSI -2. 'SIGX(Y*SINBI 'COSBI +SIGYGBI ~SI

WRITE (6,17) I,D(IS),USNEG;,LBPOS,D(IN),LUGIW,IjO,UD UG,
1 UXPOS,UYPOS,SIGS,SIGN

C
C600 CONITIUE

C (CJlf'TM DI S L 11 M AND STRESSES AT SPUIFIE) POINTS IN DODV.

IF (HUMcS.J.o.) GO 70 900

DO90 -,UO
READ (5,19) XBYWXAE,",TP
IF (KTIPE.B0.0) WRITE (6,22)
IF (KTYPZ.UD.1) WRITE (6,18)
MiQ-t=UMPB+lI DBXu (XDI-B0) /tVE
EE!- (YEND-Yin)/MWf
IF (NUMPB.GT.0) IIW-IU'MP+lI IF (DRX"2+DMY**2.90.0.) NUPF-

ANG3Z'.ATAN2(CYEID-YB3, XMND-)=

D 690 NI-1,MIE"
XP=XBG4(NI-i) 'CU.

C PYB+NI1*MIx0
IYO
Iia-
IIYMY



DO 880 J-1,NUPME

JS-JN-1
CALL INITL
XJ=XN(J
YJ-YN(J)

I IF ( WT ((XP-XJ)**2+(YP-Yj)**2).LT.2.*Aj) OD To 690
IF (KTYPE.NQ.1) R-SO~T((XP-XinO)'(XP-XBuG)4(XP-YUE)(YP-YG))

C
CDSBJuCSBET (J)
SINBJ-SINT( J)
CAIL CM7(P,YP,XJ,YJ,AJ,COSJ,SINBJ,+l)
00 TO (840,810,820,830),KSYM

810 XJ=2. 'XSYM-XM(J)
CALL aOEwF(X,YP,XJ, YJ,AJ,(XO6BJ, -SIHJ,-l)
OD 70 840IC820 YJ2*SY-MJ

I OD TO 840

830 XJ-2.'XSYN-XH(J)I~G CALL (XP,YP,XJ,YJ,AJ,a3BSJ,-SINDJ,-l)
XJ-XN(J)
YJ-2. 'YSYN-YN(J)
CALL CO'F(XP,YP,XJ,YJ,AJ,-CSD3,SINI3,-l)
XJ=2 * *XSYM-XM(J)
MAL OOIWF(XP,YP,XJ,YJ,AJ,-a~sDj,-SINBJ,+l)

840 CONTINU
C

UX4JX4UXSD(JS )4UXN*D(JN)I UY-IJY+UYS*D(JS ) 44JN*D(JN)
SIGXX.SIGX+SXXSD( JS )+S304D( JN)
SIGYY-SIG!Y+SYYSD(JS )+ M *ND(JN4)I BIGIXY-BIG3XY+SXYSD(JS )+BXYND(JN)

IF (KTYW.80.l) 00 TO 865
lIRI78 (6,20) 31'OIT,X(P, YP,UXUY, SICD(, SIGYY, SI(GC
OD TO 890I 885 RAD-8UT( (SI0-IGYY)'(SIGU -SXGYY)/4.+SI WY'S! WY)
ANG-PI -ATAN2 (-2. *SIGXY, SIGEC-axcY) -2. 0ANCII
9102m (SIOXX*SIGYY )/2. +RAD'a~lS(AMO)

81012-MRD'IN(ANG)
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I
I 61~~SFl-S=L'( 2. I R ) *SlG2

SiF2=T(2. I R ) *SlG12
WITl (6,20) NOIWP, XYP,LIX,UY,SIGX,SIGYY,SIG0YSIFX,SI2

890 (014TINM.
C

900 aOTINUE

C FORMAT STAT4)TS.
C

2 FORMAT (1H1,/,25X,20A4,/)
3 FORMAT OW

FORMAT (3911.4,F6.2,2F12.4)
5 FORMAT (3li.4)
6 FORMAT (/,109H NUER OF STRAIGHr-LIE SEHITS (BU COITAINING A
IT LEAST ONE BOUIDARY ELIMNT) U 0 TO DOI1 BOUNDARIES =,13,//,12
23H NUMB OF STRAIGHT-LINE SHM UI ) TO IFY OTTR LOCATION
3S (I.E., NOT ON A BOUNDARY) WE RESULTS AM TO BE FOUI -,13)

7 FORMAT (/,32H NO SYMEINRY ONDITIONS IMPOSED.)
8 FORMAT (,181H THE LINK X - XS -,F12.4,23H IS A LIU OF SYMIETRY.)
9 FORMAT (/,18H TIHE LINE Y aY -,F2.4,23H IS A LINE CV SYMIMVRY.)

10 FORMAT (/,19H TiE LINES X - Xs =,712.4,13H MiD Y a YS -,F12.4,
1 23H ARE LIMB CF SYMOTRY.)

11 FORMAT (/,14H MODELU lxx =,E1.4,/,14H MOIXA EYY ",E1.4,/,14H
*1MOD.LJUS (Y -,E11.4,//,20H POISSION RATIO VXY -,F6.2)

12 FORMAT (/,31H XX-HCHNT OF FIELD 8TRES8 -,31.4,//,31H YY-CMMOI itwr O FIELD STRESS =,911.4,/,31H XY-aO,.Or F IELD 8 8 -
2,K11.4)

13 FORMAT (IM, /,27H BOUNDARYR E MT DATA.,//,96H EamWT K
i008 x (CN1U) Y (CsNT1R) LoomI ANCIE us OR 81GB-S
2 LN OR SIGM-N,/)

14 FORaMT (14,412.4,14,2111.4)
15 FORMAT (219,312.4,F12.2,2Em5.4)
16 FORa T (1M1,/,66H DISPLACOM W AMD STRES AT MIDPOINTS (W B

1OUNIDARY EURCTS.,//,40H ZEamiT Do Us(-) us M+)
2 60H i" UN(-) UN(+) UX(-) Ue(-) UX( ),i 3 30H U1Y() SI(G-8 SICD-N,/)

17 FORMAT (110,10F10.6,2F10.1)
18 PRMAT (1H1,/,63H DISPLACEMNTS MiD A &T SEPCIFIED POINT

IS IN TIE SODY.,//,117H POINT X CD-(RD Y CD-RD U
2X UY S1G0X glr SIY KI
3 KII,/)

19 FORMAT (412.4,214)
20 FORMAT (19,2FI2.4,2F12.6,5F12.1)
22 FORMAT (1141,/,6314 DISPL WCSE MD 8M AT SPNCIIND POINT

18 IN TIE BOY.,//,93H POINT x( )-"ORD Y O-= Ux
2 UTs IGXX glory SIGC,/)

C

a (5)
CAMi (6)
ID

D-9
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SUBROIJI114 INIIL

C9l"t/2/SJCS,SXG,SYYS,SYYN,8XYS,SMXy~S,1rA4,UYs,m

SXXNUO.

SYYSUO.I SYYN-o.

SXYN-0.

UXNUO.

UYN-O.

sm

X~Ct4/ Sl/PI,axui ,a142 , i, 2,CUl,C22,c12,C66I OKXS2SXBS, SUXN, SYYS, SYYH, SXYS, SYXXYY

3 D62B'QDSC-SNB'SINB
SIN2B=2. 'SIN3'*DB

I SINB2-SINB*SINB

.~XD-( X-:X) 'CDSD+ (Y-CY) 'SIND

I Al- (01'G1'aiBB2+SIND2 )/G1/01
£2- (G2*G2*CDB2+SIND2 )/G2/02
Bl-(l.-01G1)SIN2B/G1/01
32-(1. -G2*G2 )SIN2B/G2/G2
Cl- (G1'G1'SINB24C=92 )/G2/G31
C2- (G2*G2'SINB24DSB2 )/G2/G2
RiSl-Al ( XB-A) *( XD-A ) +3j.(XB-A ) 'YB4C1YB'YBUR1B2un&2'(XB-A)*X-)B*X-*Y4 YBB
R282-A2' ( MA(X34A) +32' C +A)'Y34C2'YB3YBI IF (YB.NS.0.) OD 70 10
731-0.
132-0.I IF (ADS(X)3.(RI.A) OD T0 20
FBl--PI
132--PI3~U TO 120

10 731-ATANd2( Y/G/A1 ,XB-A+1'ThA1/2. )-ATNI2(CYB/W/ll, XD+A+113B/A1/
12.)
F92ATAR42(YB1/02/A2, XB-A452'YB/A2/2. )-ATIN2 ( YB2/l2,)&+3+2YWA2/

12.)
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I 20 F3(AWG((Rl/R2SI) )/2.
FB4-(ALOG((RlS2/R282) )/2.
Rll=-YB/Ol/RlSl+YB/Ol/R2Sl
R12--YB/0;2/R182+YB/G2/R2s2
R21m (XB-A)/GI/RI18l- ( B+A)/0l/R28
R22-( XB-A)/G2/R1S2-(XB+A)/02/R2S2
R31u(AI'(XB-A)+BI'YB/2. )/RlSl-(Al'(XB+&)+B1'YB/2. )/R2SlI R32-(A2'( XB-A)+B2'YB/2. )/RlB2-(A2*(XB4A)+B2*YB/2. )/R2S2
R41=(Bl*(XDB-A)/2.4Cl*YB)/RlSl-(Dl'(XB+A)/2.+Cl'YB)/R281
R42=( B2'(XB-A)/2.4C2'YB)/R182-(B2*(XB4A)/2 ..C2'YB)/R282I FB5-Rll/CCNl/2-Rl2*aINl/GL
FB6.'R2l/CC1/G2-R22'CctNl/Gl
PB? 4tli'CC1/Ol-Rl2/at41/G2I FB8mR21'aJNl/G1-R22/OH/G2

UXDS4+CON2' (COSBB'(FB1/CONV/G2-UB2'CC141/Gl ) +51B' (FB3-7B))
UXDt--CO142'(BIND' (VBl/ON/02-732CONl/Gl ) -COB*B' 73-73))I ~UYDS-4CC142'(COSB/Gl/G2' (753-F34) -81MB' (79l'(X4/Gl-FB2/CNl/G2))
UYIt-C-42' C SINB/Gl/G2' (FB3-UB4) +COOP (PBl'01/l-2/CNh/G2))

I ~ ~~SXX(D-4a142'(Cll'COSB' (COSB'B5-SINB'756) -C2'SINB' CSINB'774aBB'
1158) +(Cll4C12/Gl/G2) 'SIMB'COSB' (R31-R32 )-(Cli'S INB2-C12'006B2/GL/O
22)*(R41-R42))
SXXDt--a142' (cllSINB (OBB'FB5-SINB'7B) .C12COBD' CSINBMBCDSB

175)- (Cl1'COSB2-C12'SINB2/G2)*'(R31-R32 )+(C114C12/GL/G2) 'SINB'CO
2SB'(R41-R42))
SYYD-+CN2'(Cl 2'DSB' ( COB*B5-SINBFB6 ) -C22'SINB' CSIMB'VB74006B'I 1B8)+ (C12+C22/G1/02 ) SIN*DSB'(R31-R32 ) -(C12'SINB2--C22'008B2//G

22)'(R41-R42))
SYY[2--CON2 (C12'SI NB' (CX3BFB5-SINB'736 ) C22'CDSB' (SINBMB'B+OOB

1758)- (C12'(DSB2-C22'SINB2/GI/G2 )*'(R31-R32 ) NC124C2/Ol/G2 ) SINB'CD
2SB'(R41-R42))
SXYD-402'C66* C INB'COUB' (115-957) 4(OBB2'VB+SINB2'FB8+( SINB24CD

1SB2/Gl/G;2) *(R31-R32) +SINB'OB* (. -. /Gl/02)*(R41-R42))
SXYJ1-Cd2'C66* CSINB2'7B54CO32'7B7+S1NB'QUD (736-13) -SINB'CM

1*(1.-l./1/G2)(R31-R32)-(C632+SINB2/G1/02)(R41-R42))

UU-IDHSYUXD

UYS-IfS+NBDM'UYDO

SYYs-M8YM'syDO
SYSYYNOM46YYMO
SXYs-MS+9M'KSXYDO

U CU

SUWI'I? SBQ..V3(N)
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Ic
aNI/3/A(1600,1600),B(1600) ,X(1600)

Do 20 J-1,NB

DO 10 I-J,N
1A(JJ,I)=A(JJ,I)-A(J,I)*XM
2B(JJ)-B(JJ)-B(J)*XM

C
X (N) -3(N) /A (NN)I DO 40 J-I,NB
JJ-N-j
L=J4

DO 30 I-.,N
30 SUM-SIJ94A(JJ,I)*X(I)I C40 X(JJ)-(B(JJ)-SWI)/A(JJ,JJ)

* mcO

In
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